搜索(DLX): POJ 3074 3076 Sudoku
POJ 3074 :
DescriptionIn the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,
. 2 7 3 8 . . 1 . . 1 . . . 6 7 3 5 . . . . . . . 2 9 3 . 5 6 9 2 . 8 . . . . . . . . . . . 6 . 1 7 4 5 . 3 6 4 . . . . . . . 9 5 1 8 . . . 7 . . 8 . . 6 5 3 4 . Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.
Input
The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.
Output
For each test case, print a line representing the completed Sudoku puzzle.
Sample Input
.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
endSample Output
527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936
POJ 3076:
DescriptionA Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells are filled with letters from A to P (the first 16 capital letters of the English alphabet), as shown in figure 1a. The game is to fill all the empty grid cells with letters from A to P such that each letter from the grid occurs once only in the line, the column, and the 4x4 square it occupies. The initial content of the grid satisfies the constraints mentioned above and guarantees a unique solution.
Write a Sudoku playing program that reads data sets from a text file.Input
Each
data set encodes a grid and contains 16 strings on 16 consecutive lines
as shown in figure 2. The i-th string stands for the i-th line of the
grid, is 16 characters long, and starts from the first position of the
line. String characters are from the set {A,B,…,P,-}, where – (minus)
designates empty grid cells. The data sets are separated by single empty
lines and terminate with an end of file.Output
The program prints the solution of the input encoded grids in the same format and order as used for input.Sample Input
--A----C-----O-I
-J--A-B-P-CGF-H-
--D--F-I-E----P-
-G-EL-H----M-J--
----E----C--G---
-I--K-GA-B---E-J
D-GP--J-F----A--
-E---C-B--DP--O-
E--F-M--D--L-K-A
-C--------O-I-L-
H-P-C--F-A--B---
---G-OD---J----H
K---J----H-A-P-L
--B--P--E--K--A-
-H--B--K--FI-C--
--F---C--D--H-N-Sample Output
FPAHMJECNLBDKOGI
OJMIANBDPKCGFLHE
LNDKGFOIJEAHMBPC
BGCELKHPOFIMAJDN
MFHBELPOACKJGNID
CILNKDGAHBMOPEFJ
DOGPIHJMFNLECAKB
JEKAFCNBGIDPLHOM
EBOFPMIJDGHLNKCA
NCJDHBAEKMOFIGLP
HMPLCGKFIAENBDJO
AKIGNODLBPJCEFMH
KDEMJIFNCHGAOPBL
GLBCDPMHEONKJIAF
PHNOBALKMJFIDCEG
IAFJOECGLDPBHMNK
这两道题几乎一样的,就是要你求一个数独矩阵。
难得有这样一道接近生活的信息题啊~~~
POJ 3074:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxnode=;
const int maxn=;
const int maxm=;
struct DLX
{
int L[maxnode],R[maxnode],U[maxnode],D[maxnode],Row[maxnode],Col[maxnode],C[maxm],H[maxn],cnt;
bool used[maxn];
void Init(int n,int m)
{
for(int i=;i<=m;i++)
{
L[i]=i-;R[i]=i+;
U[i]=D[i]=i;C[i]=;
}
cnt=m;L[]=m;R[m]=; for(int i=;i<=n;i++)
H[i]=,used[i]=false;
}
void Link(int x,int y)
{
C[Col[++cnt]=y]++;
Row[cnt]=x; U[cnt]=y;
U[D[y]]=cnt;
D[cnt]=D[y];
D[y]=cnt; if(H[x])
L[R[H[x]]]=cnt,R[cnt]=R[H[x]],R[H[x]]=cnt,L[cnt]=H[x];
else
H[x]=L[cnt]=R[cnt]=cnt;
} void Delete(int c)
{
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
--C[Col[j]],U[D[j]]=U[j],D[U[j]]=D[j];
} void Resume(int c)
{
L[R[c]]=c;R[L[c]]=c;
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++C[Col[j]],U[D[j]]=j,D[U[j]]=j;
} bool Solve()
{
if(!R[])return true;
int p=R[];
for(int i=R[p];i;i=R[i])
if(C[p]>C[i])
p=i;
Delete(p);
for(int i=D[p];i!=p;i=D[i]){
used[Row[i]]=true;
for(int j=R[i];j!=i;j=R[j])
Delete(Col[j]);
if(Solve())
return true;
used[Row[i]]=false;
for(int j=L[i];j!=i;j=L[j])
Resume(Col[j]);
}
Resume(p);
return false;
}
void Print()
{
for(int i=;i<=;i++)
for(int j=(i-)*+;j<=i*;j++)
if(used[j]){
int Color=j-(i-)*;
printf("%d",Color);
}
printf("\n");
}
}DLX; int Area(int x,int y)
{
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=)return ;
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=)return ;
if(y<=)return ;
if(y<=)return ;
return ;
} char str[];
int main()
{
int x,y;
while(~scanf("%s",str+))
{
if(!strcmp(str+,"end"))break;
DLX.Init(,);x=;y=;
for(int i=;i<=;i++)
{
for(int j=(i-)*+;j<=i*;j++)
{
int Color=j-(i-)*;
if(str[i]!='.'&&str[i]-''!=Color)
continue; DLX.Link(j,(x-)*+Color); //行中对应颜色
DLX.Link(j,+(y-)*+Color); //列中对应颜色
DLX.Link(j,+Area(x,y)*+Color);//块中对应颜色
DLX.Link(j,+i); //矩阵中对应位置
}
y++;x+=y/;y=(y-)%+;
}
DLX.Solve();
DLX.Print();
}
return ;
}
POJ 3076:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxnode=;
const int maxn=;
const int maxm=;
struct DLX
{
int L[maxnode],R[maxnode],U[maxnode],D[maxnode],Row[maxnode],Col[maxnode],C[maxm],H[maxn],cnt;
bool used[maxn];
void Init(int n,int m)
{
for(int i=;i<=m;i++)
{
L[i]=i-;R[i]=i+;
U[i]=D[i]=i;C[i]=;
}
cnt=m;L[]=m;R[m]=; for(int i=;i<=n;i++)
H[i]=,used[i]=false;
}
void Link(int x,int y)
{
C[Col[++cnt]=y]++;
Row[cnt]=x; U[cnt]=y;
U[D[y]]=cnt;
D[cnt]=D[y];
D[y]=cnt; if(H[x])
L[R[H[x]]]=cnt,R[cnt]=R[H[x]],R[H[x]]=cnt,L[cnt]=H[x];
else
H[x]=L[cnt]=R[cnt]=cnt;
} void Delete(int c)
{
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
--C[Col[j]],U[D[j]]=U[j],D[U[j]]=D[j];
} void Resume(int c)
{
L[R[c]]=c;R[L[c]]=c;
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++C[Col[j]],U[D[j]]=j,D[U[j]]=j;
} bool Solve()
{
if(!R[])return true;
int p=R[];
for(int i=R[p];i;i=R[i])
if(C[p]>C[i])
p=i;
Delete(p);
for(int i=D[p];i!=p;i=D[i]){
used[Row[i]]=true;
for(int j=R[i];j!=i;j=R[j])
Delete(Col[j]);
if(Solve())
return true;
used[Row[i]]=false;
for(int j=L[i];j!=i;j=L[j])
Resume(Col[j]);
}
Resume(p);
return false;
}
void Print()
{
for(int i=;i<=;i++){
for(int j=(i-)*+;j<=i*;j++)
if(used[j]){
int Color=j-(i-)*;
printf("%c",'A'+Color-);
break;
}
if(i%==)
printf("\n");
}
printf("\n");
}
}DLX; int Area(int x,int y)
{
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=)return ; if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=)return ; if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=&&y<=)return ;
if(x<=)return ; if(y<=)return ;
if(y<=)return ;
if(y<=)return ;
return ;
} char str[],s[];
int main()
{
while(true){
int x=,y=;
DLX.Init(,);
for(int i=;i<;i+=){
if(not~scanf("%s",s))return ;
for(int j=i;j<i+;j++)
str[j]=s[j-i];
}
for(int i=;i<=;i++)
{
for(int j=(i-)*+;j<=i*;j++)
{
int Color=j-(i-)*;
if(str[i]!='-'&&str[i]-'A'+!=Color)
continue; DLX.Link(j,(x-)*+Color); //行中对应颜色
DLX.Link(j,+(y-)*+Color); //列中对应颜色
DLX.Link(j,+Area(x,y)*+Color);//块中对应颜色
DLX.Link(j,+i); //矩阵中对应位置
}
y++;x+=y/;y=(y-)%+;
}
DLX.Solve();
DLX.Print();
}
return ;
}
搜索(DLX): POJ 3074 3076 Sudoku的更多相关文章
- DLX (poj 3074)
题目:Sudoku 匪夷所思的方法,匪夷所思的速度!!! https://github.com/ttlast/ACM/blob/master/Dancing%20Link%20DLX/poj%2030 ...
- 【POJ 3074】 Sudoku
[题目链接] http://poj.org/problem?id=3074 [算法] 将数独问题转化为精确覆盖问题,用Dancing Links求解 转化方法如下 : 我们知道,在一个数独中 : 1. ...
- 【POJ】3076 Sudoku
DLX第一题,模板留念. /* 3076 */ #include <iostream> #include <string> #include <map> #incl ...
- POJ 3074 Sudoku (DLX)
Sudoku Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- 搜索+剪枝——POJ 1011 Sticks
搜索+剪枝--POJ 1011 Sticks 博客分类: 算法 非常经典的搜索题目,第一次做还是暑假集训的时候,前天又把它翻了出来 本来是想找点手感的,不想在原先思路的基础上,竟把它做出来了而且还是0 ...
- (简单) POJ 3076 Sudoku , DLX+精确覆盖。
Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...
- POJ 3076 Sudoku DLX精确覆盖
DLX精确覆盖模具称号..... Sudoku Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 4416 Accepte ...
- POJ 3074 Sudoku DLX精确覆盖
DLX精确覆盖.....模版题 Sudoku Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8336 Accepted: ...
- (简单) POJ 3074 Sudoku, DLX+精确覆盖。
Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgr ...
随机推荐
- Lamp环境部署指南
1.安装apache 1)安装httpd: yum install httpd 2)启动httpd服务 service httpd start 2.安装mysql 1)安装mysql yum inst ...
- empty函数PHP
empty译为: adj.空的,空虚的,空洞的;空闲的,无效的,徒劳的;无聊的,愚蠢的;言语或行动空洞的 vt.(使)成为空的, 把…弄空;把…腾出来 vi.成为空的;流空 n.空车;空的东西 是PH ...
- iOS图片压缩
项目中常会遇到,上传图片的操作,由于iPhone手机直接拍照的图片往往比较大,一般3-4M,如果直接上传不做处理会浪费用户很多流量,再者有很多场景并不需要高清图片,所以在上传图片前对图片进行压缩,是很 ...
- C## 输出Hello world
首先新建一个项目 然后在文件D:\C##Obj\HelloWorld\HelloWorld\Program.cs using System; using System.Collections.Gene ...
- CSS3新增Hsl、Hsla、Rgba色彩模式以及透明属性(转)
CSS2中色彩模式只有RGB色彩模式(RGB即RED.Green.BLue)和十六进制(Hex)模式,为了能支持 透明opacity 的Alpha值,CSS3又增加了RGBA色彩模式(RGBA即RED ...
- php中调用其他系统http接口的方法说明
使用函数: file_get_contents($url); 传入接口url及其参数:如 $url="http://192.168.1.1/test.jsp?id=1&type=2& ...
- ssh配置事务
http://blog.csdn.net/jianxin1009/article/details/9202907(不错)
- 【转】iOS-Core-Animation-Advanced-Techniques(二)
原文: http://www.cocoachina.com/ios/20150104/10816.html 视觉效果和变换 (四)视觉效果 嗯,园和椭圆还不错,但如果是带圆角的矩形呢? 我们现在能做到 ...
- Linux命令:cat命令详解
概述:查看文件内容,连接文件,重定向输出到文件 1.查看整个文件 2.cat > filename 创建文件 3.合并输出到文件 1.查看文件(单个或者多个) cat demo.txt 2.创建 ...
- java——输入流FileInputStream
写一个简单的程序,实现从电脑中的一个盘里的文件中往程序中输入内容. package com.liaojianya.chapter5; import java.io.FileInputStream; i ...
