【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线
可能是一类dp的通用优化
Description
最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线。 新的电话线架设在已有的N(2 <= N <= 100,000)根电话线杆上, 第i根电话线杆的高度为height_i米(1 <= height_i <= 100)。 电话线总是从一根电话线杆的顶端被引到相邻的那根的顶端 如果这两根电话线杆的高度不同,那么FJ就必须为此支付 C*电话线杆高度差(1 <= C <= 100)的费用。当然,你不能移动电话线杆, 只能按原有的顺序在相邻杆间架设电话线。Farmer John认为 加高某些电话线杆能减少架设电话线的总花费,尽管这项工作也需要支出一定的费用。 更准确地,如果他把一根电话线杆加高X米的话,他得为此付出X^2的费用。 请你帮Farmer John计算一下,如果合理地进行这两种工作,他最少要在这个电话线改造工程上花多少钱。
Input
* 第1行: 2个用空格隔开的整数:N和C
* 第2..N+1行: 第i+1行仅有一个整数:height_i
Output
* 第1行: 输出Farmer John完成电话线改造工程所需要的最小花费
Sample Input
2
3
5
1
4
输入说明:
一共有5根电话线杆,在杆间拉电话线的费用是每米高度差$2。
在改造之前,电话线杆的高度依次为2,3,5,1,4米。
Sample Output
输出说明:
最好的改造方法是:Farmer John把第一根电话线杆加高1米,把第四根加高2米,
使得它们的高度依次为3,3,5,3,4米。这样花在加高电线杆上的钱是$5。
此时,拉电话线的费用为$2*(0+2+2+1) = $10,总花费为$15。
题目分析
最基础的转移方程
因为这里每一个元素的转移只和前一个有关系,那么自然想到$f[i][j]$表示处理到第$i$个元素,同时它的高度为$j$的最小代价。
那么总状态数是$10^5\times 10^2$,每一次转移$10^4$。正常代码不刻意卡常是无法通过的。
从数形结合看转移
写下转移方程$f[i][j]=f[i-1][k]+(j-h[i])^2+c|j-k|$发现对于同一$f[i][j]$,其每次转移是一个开口向上的二次函数,这意味着枚举前一个高度$k$时若发现代价随高度递增,那么之后状态的也不可能会更优了。
#include<bits/stdc++.h>
#define R register int
const int maxn = ; int n,c,h[maxn],mx,ans;
int f[][],nw; inline int abs(int x){return x>?x:-x;}
int main()
{
memset(f, 0x3f3f3f3f, sizeof f);
scanf("%d%d",&n,&c);
ans = 0x3f3f3f3f;
for (R i=; i<=n; i++) scanf("%d",&h[i]), mx = h[i]<mx?mx:h[i];
for (R i=h[]; i<=mx; i++) f[][i] = (i-h[])*(i-h[]);
for (R i=; i<=n; i++)
{
for (R j=h[i]; j<=mx; j++)
{
R pre = 0x3f3f3f3f, w = (j-h[i])*(j-h[i]), val = ;
for (R k=h[i-]; k<=mx; k++)
{
val = f[nw^][k]+w+c*abs(j-k);
if (val < f[nw][j]) f[nw][j] = val;
else if (val > pre) break;
pre = val;
}
}
nw ^= ;
memset(f[nw], 0x3f3f3f3f, sizeof f[nw]);
}
for (R i=h[n]; i<=mx; i++)
ans = std::min(ans, f[nw^][i]);
printf("%d\n",ans);
return ;
}
从决策单调看转移
因为$f[i][j]=(j-h[i])^2+\{f[i-1][k]+c|j-k|\}$,而大括号内的式子与$j$无关,说明可以在枚举$j$的过程中选择最优的$k$。
至于这个选择也并不难。把式子大力拆开就是
$\begin{equation}\left\{\begin{array}{lr}f[i][j]=(j-h[i])^2+min(f[i-1][k]-c*k+c*j)\ \ (k<j) &\\ f[i][j]=(j-h[i])^2+min(f[i-1][k]+c*k-c*j)\ \ (k>j)\end{array}\right.\end{equation}$
这样就可以分别从小到大和从大到小各枚举一遍,天然保证了$j,k$之间的大小顺序。
做法来源:题解 P2885 【[USACO07NOV]电话线Telephone Wire】
#include<bits/stdc++.h>
#define R register int
const int maxn = ;
const int INF = 0x3f3f3f3f; int n,c,mx,nw,ans,h[maxn];
int f[][]; inline int min(int a, int b){return a>b?b:a;}
int main()
{
memset(f, 0x3f3f3f3f, sizeof f);
scanf("%d%d",&n,&c), ans = INF;
for (R i=; i<=n; i++) scanf("%d",&h[i]), mx = mx>h[i]?mx:h[i];
for (R i=h[]; i<=mx; i++) f[][i] = (i-h[])*(i-h[]);
for (R i=; i<=n; i++)
{
R k = INF;
for (R j=h[i-]; j<=mx; j++)
{
k = min(k, f[nw^][j]-c*j);
if (j >= h[i]) f[nw][j] = k+c*j+(j-h[i])*(j-h[i]);
}
k = INF;
for (R j=mx; j>=h[i]; j--)
{
k = min(k, f[nw^][j]+c*j);
f[nw][j] = std::min(k-c*j+(h[i]-j)*(h[i]-j), f[nw][j]);
}
nw ^= ;
memset(f[nw], 0x3f3f3f3f, sizeof f[nw]);
}
for (R i=h[n]; i<=mx; i++)
ans = min(ans, f[nw^][i]);
printf("%d\n",ans);
return ;
}
END
【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线的更多相关文章
- bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)
1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 441 Solved: ...
- [bzoj1705] [Usaco2007 Nov]Telephone Wire 架设电话线
正常DP.. f[i][j]表示前i个电线杆,把第i个电线杆高度改为j的最少总费用.设原来电线杆高度为h[] f[i][j]=min{ f[i-1][k]+C*|j-k|+(j-h[i])^2,(k& ...
- BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP
BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...
- 【bzoj1705】[Usaco2007 Nov]Telephone Wire 架设电话线 dp
题目描述 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= N < ...
- bzoj 1705;poj 3612:[Usaco2007 Nov]Telephone Wire 架设电话线
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885
本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...
- bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线——dp
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- 【BZOJ】1705: [Usaco2007 Nov]Telephone Wire 架设电话线
[题意]给定一排n根杆高度hi,一个常数C,杆升高x的代价为x^2,相邻两杆之间架设电话线代价为高度差*C,求总代价最小. [算法]DP+辅助数组优化 [题解]令f[i][j]表示第i根杆高度为j的最 ...
- BZOJ 1705: [Usaco2007 Nov]Telephone Wire 架设电话线 DP + 优化 + 推导
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
随机推荐
- 浅谈JAVA GUI中,AWT与Swing的区别、联系及优缺点
浅谈JAVA GUI中,AWT与Swing的区别.联系及优缺点 A.区别 1.发布的时间 AWT是在JDK 1.0版本时提出的 Swing是在AWT之后提出的(JAVA 2) 2. ”重量” AWT是 ...
- 02.Jquery Mobile介绍以及Jquery Mobile页面与对话框
一.为什么要学Jquery Mobile JqueryMobile 是jquery的移动版本,懂基本的jquery知识,会简单的html+css就可以完成很多复杂的功能,还有就是这个框架在企业中用 ...
- MySQL索引原理与慢查询
=========索引原理与慢查询======= 阅读目录 - 一.介绍 - 二.索引的原理 - 三.索引的数据结构 - 四.聚集索引与辅助索引 - 五.MyS ...
- 一篇文章彻底了解Java垃圾收集(GC)机制
垃圾收集(Garbage Collection ,GC),是一个长久以来就被思考的问题,当考虑GC的时候,我们必须思考3件事情: 哪些内存需要回收? 什么时候回收? 如何回收? 那么在Java中,我们 ...
- 043 Multiply Strings 字符串相乘
给定两个以字符串表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积.注意: num1 和 num2 的长度均小于110. num1 和 num2 均只包含数字 0 ...
- hbase按照时间戳删除记录
1.按照时间戳范围查询记录 echo "scan 'event_log', { COLUMN => 'cf:sid', TIMERANGE => [1466265600272, ...
- 不同ORM新的理解
对于ORM你怎么理解?你用过的ORM有什么区别?这是面试的时候基本上会问的问题. 问题很简单,本文不在阐述.本文主要讨论Dapper 和 EF Core First的区别. 从直观上来看两个都是ORM ...
- 洛谷P1057 传球游戏
f[i][j]表示第i轮j拿到球的方案数 转移:f[i][j]=f[i-1][j+1] +f[i-1][j+-1].注意: 边界f[0][1]=1; 还有当j=1或N时 #include<ios ...
- 疯狂使用 leancloud (投稿文章)
疯狂使用 leancloud 本文章是投稿文章,已在 leancloud 微信公众号发表. 这里是原文,内容有调整. 3年,从工程师到创始人 觉得不错可以点这里进行 leancloud 注册 项目背景 ...
- leetcode84 Largest Rectangle in Histogram
思路: 使用单调栈计算每个位置左边第一个比它矮的位置和右边第一个比它矮的位置即可. 实现: #include <bits/stdc++.h> using namespace std; cl ...