pandas学习series和dataframe基础
PANDAS 的使用
一.什么是pandas?
1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的。
2.pandas纳入了大量库和一些标准的数据模型,提供了高效的操作大型数据集的工具
3.pandaas提供了大量能使我们快速便捷的处理数据的函数和方法。
4.pandas使python成为了强大高效的数据分析环境的重要因素之一。
5.SPSS数据分析工具IBM 1g excel
6.panda数据预处理
二pandas的数据结构
1.数据分析三剑客:numpy,matplotlib ,pandas
①.pandas中series类
series是一种类似于一维数组的类对象,由下面两部分组成
1.velues:一组数据(ndarray类似)
2.index:相关的数据索引
Series属性
Series(['data=None', 'index=None', 'dtype=None', 'name=None', 'copy=False', 'fastpath=False'],)
series的创建有两种创建方式
(1)由列表或numpy数组创建(默认索引为0到整数型索引,还可以通过设置index参数指定索引)
格式:Series(data,index)
(2)由字典创建
格式:Series({key:value})
注意:由ndarray创建的是引用,而不是副本,对series元素的改变也会改变原来的ndarray对象中的元素。
如:s2 = Series({"A":148,"B":130,"C":118,"D":117,"E":99},dtype=np.float32,name="python")
s2
输出结果:
A 148.0
B 130.0
C 118.0
D 117.0
E 99.0
Name: python, dtype: float32
Series的索引和切片
可以使用括号取单个索引(此时返回的是元素的类型),或者中括号中一个
列表取多个索引(此时返回的任然是一个series类型)。分为显示索引和影视索引:
1显示索引:
--使用index中的值作为索引值
--使用.loc[](推荐)
注意:此时是闭区间
2.隐式索引:
--使用整数作为索引值
--使用.iloc[](推荐)
注意:此时是半闭区间
Series的基本概念
可以把series看成是一个定长的有序字典
可以通过shape,size,index,values得到series的属性
Series的方法
可以通过head(),tail()快速查看series的样式
head(num)返回一个前num列数据
tail(num)返回后num列的数据
当索引没有对应的值时,返回NaN(NOT A NUMBER)值
可以使用pd.isnumm(),pd.notnull()的方式来检测数据的缺失
如 cond = s5.isnull()
S6 = index(cond)
Series的运算
(1)使用于numpy的数组运算也适用于series
(2)series之间的运算
在运算中自动对齐相同的索引的数据
如果索引不对应,则补NaN
注意:要想保留所有的index,则需要使用.add()函数
二.DataFrame数据结构
- DataFrame是一个【表格型】数据结构,可以看做是由series组成的字典,将series的使用场景从一维拓展到多维。dataframe既有行索引也有索引
Init signature: DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
行索引:index
列索引:columns
值:values
2.dataframe的创建
同series一样,两种创建方式
dataframe以字典的键作为每一列的名称,以字典的值作为每一列的值。dataframe会自动为每一行添加行索引(和series一样)。
如:
df = DataFrame(data = np.random.randint(0,150,size=(10,4)),index = list("abcdefghij"),columns = ["python","math","english","chiness"])
df2=DataFrame(data={"python":np.random.randint(0,150,size=10),"math":np.random.randint(0,150,size=10),"chinese":np.random.randint(0,150,size=10),"english":np.random.randint(0,150,size=10)})
DataFrame的索引和切片
注意:索引表示的列索引,切片表示的行切片
1.索引
(1)对列进行索引,列索引是属性,行索引是样本
使用类似字典的方式
使用属性的方式
df[“python”],df2[["python","math"]]
df.python
(2)对行进行索引
.ix[]进行行索引
使用.loc[]加index来进行行索引
使用.iloc[]加整数数类进行行索引
返回一个series,index为原来的columns
如:df2.loc[1]
df.iloc[“a”]
df2.loc[[1,2,3]]
(3)对元素索引的方法
先获取行在获取列,如:df.loc["a"]["python"]
先获取列在获取行,如:df["python"]["a"]
二维形式进行获取单个值,如:df.loc["a","python"];df2.iloc[0,0]
- 切片
(1)列切片:如df.iloc[:,2:];df[["python","math"]]
(2)行切片:直接切片或使用loc(),iloc()如:df[1:2];df.iloc[2:5];df.loc["a":"b"]
3.dataframe的运算
下边python操作符合pandas操作函数的对应表

(1)同series一样
在运算中自动对齐相同的索引
如果索引不对应,则用nan补全
(2)series与dataframe之间的运算(重要)
使用python操作符:以行为单位操作(参数必须是行),对所有行都有效。(类似与numpy中二维数组与一维数组的运算,但是可能出现nan值)
注明axis,运算时指明对齐索引
使用pandas操作函数:
axis=0:以列为操作单位(参数必须是列),对所有列都有效。
axis=1:以行为操作单位(参数必须是行),对所有行都有效
如:df5.add(ss,axis=0)
pandas学习series和dataframe基础的更多相关文章
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- [Python] Pandas 中 Series 和 DataFrame 的用法笔记
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...
- Python数据分析-Pandas(Series与DataFrame)
Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...
- pandas中series和dataframe之间的区别
series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...
- Pandas中Series与Dataframe的初始化
(一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...
- Pandas中Series与Dataframe的区别
1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...
- numpy、pandas学习二
#numpy中arrary与pandas中series.DataFrame区别#arrary生成数组,无索引.列名:series有索引,且仅能创建一维数组:DataFrame有索引.列名import ...
随机推荐
- redis之使用
redis之使用 redis ================================= 1.自动分配.你在什么时候用到了自动分配? 答:市场部或运营部招来的新的客户,单条(批量)录入数据的 ...
- python进阶02 特殊方法与特殊属性
python进阶02 特殊方法与特殊属性 一.初始化.析构 1.初始化 # python中有很多双下划线开头且以下划线结尾的固定方法,它们会在特定的时机被触发执行,这便是特殊方法 # 在实例化的时候就 ...
- 牛客假日团队赛2 A.买一送一
链接: https://ac.nowcoder.com/acm/contest/924/A 题意: Farmer John在网上买干草.他发现了一笔特殊的买卖.他每买一捆大小为A(1 <= A ...
- yii2.0下,JqPaginator与load实现无刷新翻页
JqPaginator下载地址http://jqpaginator.keenwon.com/ 控制器部分: <?php namespace backend\controllers; use co ...
- enum StatCode
public enum StatCode { NORMAL(0,"正常"), FLAME_OUT(1,"熄火"), NOT_INSTALL(2,"未安 ...
- 仙人掌(cactus)
题目描述LYK 在冲刺清华集训(THUSC)!于是它开始研究仙人掌,它想来和你一起分享它最近研究的结果.如果在一个无向连通图中任意一条边至多属于一个简单环(简单环的定义为每个点至多经过一次),且不存 ...
- vue or react mvvm里的文字上下滚动
1.jQuery 时候实现 上下滚动很简单,基本上一个animateTop就可以了 2. vue等MVVM就有些麻烦了,因为不推荐操作DOM,专注于数据 我们可以使用 css3 transition: ...
- 用户 'IIS APPPOOL\**' 登录失败的解决方案(项目部署到本地IIS上打开网页出现报错)
为开发方便-将项目部署到本地IIS上打开网页出现报错 1.打开IIS管理 2.点击应用池 3.找到你部署的网站名,右键“高级设置”——>“进程模型”——>“标识”修改为localsyste ...
- Python中的绝对路径和相对路径
大牛们应该对路径都很了解了,这篇文章主要给像我这样的入门小白普及常识用的,啊哈 下面的路径介绍针对windows,其他平台的暂时不是很了解. 在编写的py文件中打开文件的时候经常见到下面其中路径的表达 ...
- Kail安装后的配置
安装完Kail系统后进行简单的几项配置可以让使用更方便 VMware安装Kail系统这里就不介绍了,大家可以参考这个博客:http://www.cnblogs.com/xuanhun/p/568831 ...