Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly n houses in Ultimate Thule, Vova wants the city to have exactly n pipes, each such pipe should be connected to the water supply. A pipe can be connected to the water supply if there's water flowing out of it. Initially Vova has only one pipe with flowing water. Besides, Vova has several splitters.

A splitter is a construction that consists of one input (it can be connected to a water pipe) and x output pipes. When a splitter is connected to a water pipe, water flows from each output pipe. You can assume that the output pipes are ordinary pipes. For example, you can connect water supply to such pipe if there's water flowing out from it. At most one splitter can be connected to any water pipe.

 The figure shows a 4-output splitter

Vova has one splitter of each kind: with 2, 3, 4, ..., k outputs. Help Vova use the minimum number of splitters to build the required pipeline or otherwise state that it's impossible.

Vova needs the pipeline to have exactly n pipes with flowing out water. Note that some of those pipes can be the output pipes of the splitters.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 109).

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

Output

Print a single integer — the minimum number of splitters needed to build the pipeline. If it is impossible to build a pipeline with the given splitters, print -1.

Examples

Input

4 3

Output

2

Input

5 5

Output

1

Input

8 4

Output

-1

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; long long n,k;
bool f(long long mid) {
long long s;
s=(k+1)*k/2-mid*(mid-1)/2-(k-mid);
if(mid==k) s=mid;
if(s>=n) return true;
else return false;
}
int main() { scanf("%lld%lld",&n,&k);
long long sum=0;
sum=k*(k+1)/2-k+1;
long long ans=k-1;
long long l=2,r=k+1;
long long mid=(l+r)/2;
if(sum<n) {
printf("-1\n");
} else if(n==1) {
printf("0");
} else {
while(mid-l>0) {
//mid=(l+r)/2;
if(f(mid)) {
l=mid;
mid=l+(r-l)/2;
} else {
mid=l+(mid-l)/2;
}
}
long long ans=0;
ans=k+1-mid;
printf("%lld\n",ans);
}
return 0;
}

CodeForces - 287B-Pipeline(二分)的更多相关文章

  1. CodeForces 287B Pipeline

    思路:二分答案,时间复杂度O(nlgn). 若个数为x,那么算出这种情况下提供的水管的最大值和最小值与n比较即可,注意x个分离器需要减去x-1个水管. #include<cstdio> # ...

  2. CodeForces 287B Pipeline (水题)

    B. Pipeline time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  3. codeforces 1165F1/F2 二分好题

    Codeforces 1165F1/F2 二分好题 传送门:https://codeforces.com/contest/1165/problem/F2 题意: 有n种物品,你对于第i个物品,你需要买 ...

  4. codeforces 732D(二分)

    题目链接:http://codeforces.com/contest/732/problem/D 题意:有m门需要过的课程,n天的时间可以选择复习.考试(如果的d[i]为0则只能复习),一门课至少要复 ...

  5. CodeForces 359D (数论+二分+ST算法)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47319 题目大意:给定一个序列,要求确定一个子序列,①使得该子序 ...

  6. CodeForces 163B Lemmings 二分

    Lemmings 题目连接: http://codeforces.com/contest/163/problem/B Descriptionww.co As you know, lemmings li ...

  7. CodeForces - 589A(二分+贪心)

    题目链接:http://codeforces.com/problemset/problem/589/F 题目大意:一位美食家进入宴会厅,厨师为客人提供了n道菜.美食家知道时间表:每个菜肴都将供应. 对 ...

  8. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem D (Codeforces 831D) - 贪心 - 二分答案 - 动态规划

    There are n people and k keys on a straight line. Every person wants to get to the office which is l ...

  9. CodeForces - 1059D(二分+误差)

    链接:CodeForces - 1059D 题意:给出笛卡尔坐标系上 n 个点,求与 x 轴相切且覆盖了所有给出点的圆的最小半径. 题解:二分半径即可.判断:假设当前二分到的半径是 R ,因为要和 x ...

  10. Letters CodeForces - 978C (二分)

    Time limit4000 ms Memory limit262144 kB There are nn dormitories in Berland State University, they a ...

随机推荐

  1. BZOJ 3709 [PA2014]Bohater:贪心【反过来考虑】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3709 题意: 在一款电脑游戏中,你需要打败n只怪物(从1到n编号). 为了打败第i只怪物, ...

  2. ES BM25 TF-IDF相似度算法设置——

    Pluggable Similarity Algorithms Before we move on from relevance and scoring, we will finish this ch ...

  3. 遁入NOIP记

    回归noip啦 给自己定个小目标 500分起步 在这里列一下需要搞的东西OvO 1.算法基础 模拟 贪心 二分 分治 2.搜索 / 记忆化搜索 剪枝 对抗搜索 3.dp 状压 组合数学 树D 单队 D ...

  4. P2042 [NOI2005]维护数列[splay或非旋treap·毒瘤题]

    P2042 [NOI2005]维护数列 数列区间和,最大子列和(必须不为空),支持翻转.修改值.插入删除. 练码力的题,很毒瘤.个人因为太菜了,对splay极其生疏,犯了大量错误,在此记录,望以后一定 ...

  5. ACM学习历程—BestCoder 2015百度之星资格赛1001 大搬家(递推 && 组合数学)

    Problem Description 近期B厂组织了一次大搬家,所有人都要按照指示换到指定的座位上.指示的内容是坐在位置i 上的人要搬到位置j 上.现在B厂有N 个人,一对一到N 个位置上.搬家之后 ...

  6. bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie

    题目大意 给定一棵n个点的带权树,求树上最长的异或和路径 题解 因为\(xor\)操作满足可结合性,所以有 \(a\text{ }xor\text{ }b\text{ }xor\text{ }b = ...

  7. bzoj 2946 公共串 —— 后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2946 建出 n-1 个后缀自动机一起跑呗. 代码如下: #include<cstdio ...

  8. Redis实现求交集操作结果缓存的设计方案

    Redis的集合操作 实话说,Redis提供的集合操作是我选择它成为内存数据库的一个主要理由,它弥补了传统关系型数据库在这方面带来的复杂度,使得只需要简单的一个命令就可以完成一个复杂SQL任务,并且交 ...

  9. Object中的方法

    1.equals() 2.toString() package com_package1; public class Person44 { private int age; public int ge ...

  10. java---集合类(1)

    java.util包中包含了一系列重要的集合类.而对于集合类,主要需要掌握的就是它的内部结构,以及遍历集合的迭代模式. 接口:Collection Collection是最基本的集合接口,一个Coll ...