51nod 1135 原根 (数论)
建议与上一篇欧拉函数介绍结合食用。
知识点:
1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数)
例如:
2^2≡1(mod3),2对模3的阶为2;
2^3≡1(mod7),2对模7的阶为3;
2.欧拉函数φ(m):在[1,m)的区间内与m互质的数的个数。可见前一篇blog
3.设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。
求模素数p的原根a的方法:
对质数 p, φ(p) = p-1, 这题就是要找最小的a使得 a^(p-1)%p = 1 成立(根据费马小定理,该式一定成立,且a可取大于 1 的任意整数),所以只需要验证没有比 p-1 小的数 k 令 a^k%p = 1 。
而 k 不需要全部枚举 ,只需枚举 p-1 除去1和它本身的质因子即可。(如果x为p-1的质因子,且a^x%p = 1,那么x的倍数nx显然也满足a^nx%p = 1 ,所以没必要考虑了。反之同理。)
所以重点就到回到了找质因子上,1e9,还是筛。
参考了很多dalao的博客,但链接没记下来,不好意思。
#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 50000
using namespace std;
typedef long long ll;
int prime [maxn];//存素数
int ppri [maxn];//存p-1的质因子
void getprime(){//打表
int cnt = ;
memset(prime,,sizeof(prime));
for(int i=;i<maxn;i++){
if(!prime[i]) prime[++cnt]=i;//如果没被标记过,就是质数
for(int j=i;j<maxn;j+=i) prime[j] = ;//此质数的倍数都标记为1
}
}
ll pow(ll x,ll n,ll mod){//快速幂
ll res=;
while(n>){
if(n%) res=res*x%mod;
x=x*x%mod;
n/=;
}
return res;
} int divide(int n){//分解n的质因子
int cnt=;
for(int i = ; prime[i] * prime[i] <= n; ++i){
if(n % prime[i] == ) ppri[++cnt]=prime[i];
while(n % prime[i] == ) n/=prime[i];
}
return cnt;
} int main(){
int p,a,t,flag,cnt;
cin>>p;
getprime();
cnt=divide(p-);//p-1 的质因子个数
for(a = ; a <= p - ; ++a){//a 从 2 到 p-1 枚举
flag=;
for(int i=; i <= cnt; ++i){
t = (p - ) / ppri[i];
if(pow(a, t, p)==){
flag=;
break;
}
}
if(flag){
cout<<a<<endl;
break;
}
}
return ;
}
51nod 1135 原根 (数论)的更多相关文章
- 51nod 1135 原根
题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 ...
- (数论)51NOD 1135 原根
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P &l ...
- 51nod 1135 原根(原根)
题意 题目链接 Sol 可以证明素数的原根不会超过他的\(\frac{1}{4}\) 那么预处理出\(P - 1\)的所有的质因数\(p_1, p_2 \dots p_k\),暴力判断一下,如果$\e ...
- 51nod 1135 原根 就是原根...
%%% dalao Orz ,筛素数到sqrt(n),分解ϕ(p),依次枚举判断就好了 #include<cstdio> #include<cstring> #include& ...
- 51Nod 1135:元根(数论)
1135 原根 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m) ...
- 【51NOD】1135 原根
[题意]给定p,求p的原根g.3<=p<=10^9. [算法]数学 [题解]p-1= p1^a1 * p2^a2 * pk^ak,g是p的原根当且仅当对于所有的pi满足g^[ (p-1)/ ...
- 51nod 1010 stl/数论/二分
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1010 1010 只包含因子2 3 5 基准时间限制:1 秒 空间限制:1 ...
- 51 Nod 1135 原根
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P ...
- 51nod 约数和(数论)
题目链接: 约数和 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 有三个下标从1到n的数组a.b.c. a数组初始全为0. b[i]=∑j|ia[j] c[i]=∑j|ib[j] ...
随机推荐
- 洛谷P3857 [TJOI2008]彩灯(线性基)
传送门 线性基裸题 直接把所有的状态都带进去建一个线性基 然后答案就是$2^{cnt}$($cnt$代表线性基里数的个数) //minamoto #include<cstdio> #inc ...
- [Xcode 实际操作]九、实用进阶-(8)实现App的Setting设置:添加和读取程序的配置信息
目录:[Swift]Xcode实际操作 本文将演示如何实现添加和读取程序的配置信息. 在项目文件夹[DemoApp]上点击鼠标右键->[New File]创建一个设置束文件 ->[Sett ...
- IT兄弟连 JavaWeb教程 JSP中的注释
由于JSP页面由HTML.JSP.Java脚本等组成,所以在其中可以使用多种注释格式 HTML中的注释 HTML语言的注释不会被显示在网页中,但是在浏览器中选择查看网页源代码时,还是能够看到注释的信息 ...
- 【OpenJ_Bailian - 4110】圣诞老人的礼物-Santa Clau’s Gifts (贪心)
圣诞老人的礼物-Santa Clau’s Gifts Descriptions: 圣诞节来临了,在城市A中圣诞老人准备分发糖果,现在有多箱不同的糖果,每箱糖果有自己的价值和重量,每箱糖果都可以拆分成 ...
- 结束线程方法2 Java提供的中断机制
package com.mozq.thread.interrupt; /** * 注意:调用interrupt()方法,并不会结束线程. * 结束线程的语义:需要我们自己使用3个中断方法构建. * * ...
- Python开发 第02课 Python 数据类型
1.Python 变量类型 变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间.基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中.因此,变量可以指定不同的数据 ...
- centos6.7版本下配置ssh密钥登录
需要提前说明的是我使用的系统是centos6.7的版本. 1.我使用的是Putty登录 #ssh-keygen (生成公钥和私钥的命令) 回车之后会提示密钥要存放的目录,默认的目录是当前目录下的.ss ...
- Xenu使用随记
经试验发现,如果配置了host进行网站检测时,Xenu和浏览器一样,都需要配置了host之后,重新打开Xenu程序(浏览器),host的配置才能生效.
- java threadLocal的初探
在网上找了半天,终于找到一篇靠谱的文章了. 文章地址:http://qifuguang.me/2015/09/02/[Java%E5%B9%B6%E5%8F%91%E5%8C%85%E5%AD%A6% ...
- 初探ant design pro
1.增加路由子页面&配置菜单 因为ant design pro采取的是umi路由配置,所以只要在对应的文件夹下新建相关的文件夹以及文件,它会自动解析.按照如下的步骤做即可 PS.如果想要给菜单 ...