洛谷——P1962 斐波那契数列
P1962 斐波那契数列
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
5
5
10
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
矩阵乘法优化斐波那契
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define mod 1000000007LL using namespace std; struct Node { ][]; Node(){memset(m,,sizeof(m));} }ans,mb; Node operator*(Node a,Node b)//矩阵乘法 { Node c; ;i<=;i++) ;j<=;j++) ;k<=;k++) c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod; return c; } long long n; int main() { cin>>n; mb.m[][]=mb.m[][]=mb.m[][]=; ans.m[][]=ans.m[][]=; ) { ) ans=ans*mb; mb=mb*mb;n>>=; } cout<<ans.m[][]; ; }
洛谷——P1962 斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- python资源大全2
原文链接 网络 Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包.可用作交互式包处理程序或单独作为一个库. pypcap, Pcapy, pylibpcap: 几个不同 libpcap ...
- java中equals和==区别
equals 方法是 java.lang.Object 类的方法. 有两种用法说明: (1)对于字符串变量来说,使用“==”和“equals()”方法比较字符串时,其比较方法不同. “==”比较两个变 ...
- HTML练习题
1.查询一下对div和span标签的理解 div标签:是用来为HTML文档内大块的内容提供结构和背景的元素.DIV的起始标签和结束标签之间的所有内容都是用来构成这个块的,中文我们把它称作“层”. sp ...
- Redis实现之对象(一)
对象 前面我们介绍了Redis的主要数据结构,如:简单动态字符串SDS.双端链表.字典.压缩列表.整数集合等.Redis并没有直接使用这些数据结构来实现键值对数据库,而是基于这些数据结构创建了一个对象 ...
- Logistic回归python实现小样例
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Lo ...
- TCP报文格式,TCP的三次握手和四次挥手&hosts文件
1.TCP报文格式 TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接 序号(4字节=32位): 37 59 56 75 用来标识TCP发端向TCP收端发送的数据 ...
- 【Restore IP Addresses 】cpp
题目: Given a string containing only digits, restore it by returning all possible valid IP address com ...
- RESTful-rest_framework认证组件、权限组件、频率组件-第五篇
认证组件.权限组件.频率组件总结: 认证组件格式: 1 写一个认证类 from rest_framework.authentication import BaseAuthentication cla ...
- [oldboy-django][2深入django]django一个请求的生命周期 + WSGI + 中间件
1 WSGI # WSGI(是一套协议,很多东西比如wsgiref, uwsgiref遵循这一套协议) - django系统本质 别人的socket(wsgiref或者uwsgiref) + djan ...
- nyoj 题目17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...