洛谷——P1962 斐波那契数列
P1962 斐波那契数列
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
5
5
10
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
矩阵乘法优化斐波那契
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define mod 1000000007LL using namespace std; struct Node { ][]; Node(){memset(m,,sizeof(m));} }ans,mb; Node operator*(Node a,Node b)//矩阵乘法 { Node c; ;i<=;i++) ;j<=;j++) ;k<=;k++) c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod; return c; } long long n; int main() { cin>>n; mb.m[][]=mb.m[][]=mb.m[][]=; ans.m[][]=ans.m[][]=; ) { ) ans=ans*mb; mb=mb*mb;n>>=; } cout<<ans.m[][]; ; }
洛谷——P1962 斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- 子窗体与父窗体调用对方js方法
有时候为了减少一个页面内的代码量,会将部分内容放到子窗体中,如后台管理中用iframe来进行管理 <div> <iframe id="dviframe" src= ...
- centos6.4编译hadoop2.4源码
4.1.环境: 1)Linux 64 位操作系统,CentOS 6.4 版本,VMWare 搭建的虚拟机 2)虚拟机可以联网 4.2.官方编译说明: 解压命令:tar -zxvf hadoop-2.4 ...
- 决策树python实现小样例
我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优 ...
- django 自定义过滤器中的坑.
今天在创建自定义过滤器的时候,设置已正常.但是在运行后报: 'filter' is not a valid tag library: Template library filter not found ...
- Python操作MySQL数据库(二)
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同. 下载安装: pip install pymysql 1.执行SQL语句 #!/usr/bin/env pytho ...
- cf984c Finite or not?
一个十进制分数 \(p/q\) 在 \(b\) 进制下是有限小数的充要条件是 \(q\) 的所有质因子都是 \(b\) 的质因子. First, if \(p\) and \(q\) are not ...
- Python-S9——Day83-ORM项目实战
01 上节回顾 02 后台管理布局 03 按钮权限控制的简单形式 04 修改表结构 05 重构数据结构 06 限制权限颗粒度 01 上节回顾 1.1 项目的组织架构: 1.2 项目组件的版本说明: 使 ...
- icheck 动态设置选中,判断是否选择
$(this).iCheck('check'); //启用禁用上级编号 $('#OnPar').on('ifUnchecked', function (event) { ...
- Log4j官方文档翻译(九、输出到数据库)
log4j提供了org.apache.log4j.JDBCAppender对象,可以把日志输出到特定的数据库. 常用的属性: bufferSize 设置buffer的大小,默认是1 driver 设置 ...
- 使用 Nginx 过滤网络爬虫
现在有许多初学者学习网络爬虫,但他们不懂得控制速度,导致服务器资源浪费.通过 Nginx 的简单配置,能过滤一小部分这类爬虫. 方法一:通过 User-Agent 过滤 Nginx 参考配置如下: l ...