题目

题目大意

给定平面上的 $n$ 个点和常数 $k$,求 $x$ 轴上的点 $p$ 到 $n$ 个点中距其最近的 $k$ 个点的距离之和的最小值。两点之间的距离定义为曼哈顿距离。

数据范围

$1\le k \le n \le 10^5$ 。

点的坐标是 $1$ 到 $10^8$ 之间的整数。

可能有重合的点。

分析

A optimization problem can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution an optimal solution, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value.

对于这种类型的最优化问题(optimization problems),思考的大方向是「降低问题的自由度」。
具体地说,找决策空间 $U$(或者称之为「状态空间」)的一个子集 $S$,使得 $S$ 满足:

  • 可以在 $S$ 中找到一个最优解
  • $S$ 中元素较少,遍历 $S$ 找最优解是可行的

如果已经选定 $k$ 个点,要在 $x$ 轴上找一点 $p$ 使得 $p$ 到这 $k$ 个点的曼哈顿距离之和最小。这个问题相当于

给定 $x$ 轴上的 $k$ 个点,在 $x$ 轴上找一点 $p$ 使得 $p$ 到这 $k$ 个点的距离之和最小。

这是一个经典问题,解是这 $k$ 的点的中位点(median)。奇数个点的中位点是中间的那个点,偶数个点的中位点是中间的两个点之间的线段上的任意一点(包括两端点)。

回到原问题,从上面的分析可以得到一个算法:枚举最优解中 $k$ 个点的横坐标的中位点。

将给定的 $n$ 个点构成的(可重)集合记做 $P$,
注意到对于 $n$ 个点中的任意 $k$ 个点,必然存在点 $p \in P$ 使得 $p$ 的横坐标是选出的 $k$ 个点的横标做的中位点。

所以我们只需要枚举点的横坐标即可。

将 $n$ 个点按横坐标从小到大排序,依次记为 $p_1, p_2, \dots, p_n$,设第 i 个点的坐标为 $(x_i , y_i)$ 。
令 $L_i $ 为 $p_1, p_2, \dots, p_{i-1}$ 中距 $(x_i,0)$ 最近的 $\lfloor n/2 \rfloor$ 个点与 $(x_i, 0)$ 的距离之和,$R_i$ 表示 $p_i, p_{i+1}, \dots, p_n$ 中距 $(x_i, 0)$ 最近 $(x_i, 0)$ 最近的 $n - \lfloor n/2 \rfloor$ 个点与 $(x_i, 0)$ 的距离之和。

答案即 $\min_{1\le i \le n} L_i + R_i$

参考实现


### Observation I

点 $p$ 到 $k$ 个最近点的距离之和一定可以在 $p$ 的横坐标取为 $n$ 个点中某个点的横坐标时取到。

### Observation II

CSA Round 84 Mahattan Center的更多相关文章

  1. CSA Round #84 The Sprawl

    题目 Analysis 曼哈顿距离($L1$ metric)最小生成树. Implementation 下面的代码参考了 gispzjz 在比赛中的提交. #include <bits/stdc ...

  2. CSA Round 84 Growing Trees

    题目 题目大意 给定一棵有 $n$ 个节点的树,边的权值每天变化.对于第 $i$ 条边,在第 $0$ 天,其权值为 $c_i$,每天权值变化 $a_i$(即,在第 $k$ 天,其权值为 $c_i + ...

  3. CSA Round #54 $\ $Voting

    CSA Round #54 \(\ \)Voting 题目大意: 原题网址:戳我戳我! 一次歌唱比赛中,一位歌手刚刚结束表演,评委正在打分. 一共有 \(n\) 位评委,他们每人可以打 \(1\) 分 ...

  4. Codeforces Beta Round 84 (Div. 2 Only)

    layout: post title: Codeforces Beta Round 84 (Div. 2 Only) author: "luowentaoaa" catalog: ...

  5. 题解-CSA Round#18 Randomly Permuted Costs

    Problem CSA Round 18 题意概要:给定一个有重边有自环 \(n\) 点 \(m\) 边的有向无环图(DAG),每条边有其权值,每当你走到一个点 \(x\) 时,所有从 \(x\) 连 ...

  6. Educational Codeforces Round 84 (Div. 2)

    Educational Codeforces Round 84 (Div. 2) 读题读题读题+脑筋急转弯 = =. A. Sum of Odd Integers 奇奇为奇,奇偶为偶,所以n,k奇偶性 ...

  7. Codeforces Beta Round #5 B. Center Alignment 模拟题

    B. Center Alignment 题目连接: http://www.codeforces.com/contest/5/problem/B Description Almost every tex ...

  8. csa Round #66 (Div. 2 only)

    csa66 Risk Rolls Time limit: 1000 msMemory limit: 256 MB   Alena and Boris are playing Risk today. W ...

  9. Bestcoder Round #84

    A题 Aaronson http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=718&pid=1001 感觉一 ...

随机推荐

  1. x5webview 微信H5支付

    mWebView.setWebViewClient(new WebViewClient() { // @Override // public boolean shouldOverrideUrlLoad ...

  2. ASP.NET各种技巧

    1.动态添加文件框 前台页面关键部分: <script type="text/javascript"> //添加一个选项 function AddFileCtrol() ...

  3. Bootstrap 提示工具(Tooltip)插件的事件

    事件 下表列出了提示工具(Tooltip)插件中要用到的事件.这些事件可在函数中当钩子使用. 事件 描述 实例 show.bs.tooltip 当调用 show 实例方法时立即触发该事件. $('#m ...

  4. 前端小记6——项目中常用的ES6方法

    现在很多功能用es5的方法也能实现功能,但es6提供的方法显得更为高效.记录下目前常用的几个方法. 1.字符包含 通过str.includes('a')来判断, 若str中包含a则结果为true,否则 ...

  5. mbstring未安装

    yum install php55w-mbstring.x86_64 把php版本换成自己的就ok

  6. Mysql--select基础查询

    基本语法:select 查询列表 from 表名 查询列表可以是表中字段.常量值.表达式.函数:查询的结果是一个虚拟的表格. 注意: ①sql语言大小写不敏感 ②关键字不能分行或略写 ③一般书写方式为 ...

  7. Mysql占用内存过高的优化过程

    一.环境说明: 操作系统:CentOS 6.5 x86_64 数据库:Mysql 5.6.22 服务器:阿里云VPS,32G Mem,0 swap 二.问题情况: 1.某日发现公司线上系统的Mysql ...

  8. neo4j 安装

    查看 http://ip:7474/browser/

  9. 嵌入式linux:通过qemu模拟mini2440开发环境

    1 编译安装QEMU 首先下载qemu for mini2440,直接打包下载 http://repo.or.cz/w/qemu/mini2440.git/snapshot/HEAD.tar.gz  ...

  10. Ajax基础知识梳理

    Ajax用一句话来说就是无须刷新页面即可从服务器取得数据.注意,虽然Ajax翻译过来叫异步JavaScript与XML,但是获得的数据不一定是XML数据,现在服务器端返回的都是JSON格式的文件. 完 ...