Rooted Trees

Descriptions:

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

 
Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

 
Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

题目链接:

https://vjudge.net/problem/Aizu-ALDS1_7_A

题目大意:给你一个有根树的各个信息,输出它的父亲,深度,是什么性质的节点,子节点列表

输入0 - N-1节点的度和子节点(无序), 要求按照节点序号输出节点的相关信息
node id: parent = p , depth = d, type, [c1…ck]

具体做法都在代码上

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define ME0(x) memset(x,0,sizeof(x))
using namespace std;
struct node
{
int parent;
int left,right;//左子右兄弟表示法,l代表节点u的最左侧的子结点,r为u的右侧紧邻的兄弟节点
};
node a[];
int D[];
void getDepth(int u,int p)//递归求结点的深度
{
D[u]=p;
if(a[u].right!=-)//当前结点存在右侧兄弟节点,不改变深度
getDepth(a[u].right,p);
if(a[u].left!=-)//存在最左侧子结点,深度+1
getDepth(a[u].left,p+);
}
void print(int u)
{
cout<<"node "<<u<<": parent = "<<a[u].parent<<", depth = "<<D[u]<<", ";
if(a[u].parent==-)//不存在父结点,即为根节点
cout<<"root, [";
else if(a[u].left==-)//没有子结点,即为叶
cout<<"leaf, [";
else
cout<<"internal node, [";
for(int i=,c=a[u].left; c!=-; ++i,c=a[c].right)
{
if(i)
cout<<", ";
cout<<c;//节点u的子结点列表从u的左侧子结点开始按顺序输出,直到当前子结点不存在右侧兄弟节点为止
}
cout<<"]"<<endl; }
int main()
{
int n;
cin>>n;
for(int i=; i<n; ++i)//初始化
a[i].left=a[i].parent=a[i].right=-;
for(int i=; i<n; ++i)
{
int id,k;
cin>>id>>k;
for(int j=; j<k; ++j)
{
int c,l;
cin>>c;
if(j)
a[l].right=c;
else
a[id].left=c;
l=c;
a[c].parent=id;
}
}
int root;//根节点的编号
for(int i=; i<n; ++i)
if(a[i].parent==-)
root=i;
getDepth(root,);
for(int i=; i<n; ++i)
print(i);
}

【Aizu - ALDS1_7_A】Rooted Trees(树的表达)的更多相关文章

  1. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  2. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  3. Tree - Rooted Trees

    Rooted Trees A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a b ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. TZOJ 4292 Count the Trees(树hash)

    描述 A binary tree is a tree data structure in which each node has at most two child nodes, usually di ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. Disharmony Trees 树状数组

    Disharmony Trees Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  8. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

  9. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

随机推荐

  1. 在Eclipse中建立Maven Web项目

    一.软件版本 Eclipse Java EE IDE for Web Developers. Version: Neon Release (4.6.0) Maven 3.3.9 Servlet 2.5 ...

  2. tornado之模板扩展

    当我们有多个模板的时候,很多模板之间其实相似度很高.我们期望可以重用部分网页代码.这在tornado中可以通过extends语句来实现.为了扩展一个已经存在的模板,你只需要在新的模板文件的顶部放上一句 ...

  3. SpringBoot-(8)-配置MySQL数据库链接,配置数据坚挺拦截,创建默认数据表

    一,链接mysql数据库 # 数据源基本配置 spring.datasource.username=root spring.datasource.password=123456 spring.data ...

  4. windowbuilder安装

    windowbuilder,也就是原来的SWT Designer.Google收购了Instantiations,把它的工具也重新免费发布了.用过swt designer的人都知它是非常好用的swin ...

  5. 我所认为的KVC和KVO

    引子:    ​   为什么要写这个,只是突然一个念头闪现,说一下本人目前理解.KVC:    ​   Key-value coding,它是一种使用字符串标识符,间接访问对象属性的机制.但是关就这一 ...

  6. 对私有API提交的注意事项

    1.这个等于堵死了调试断点.关闭就不能断点调试了. 2.对于敏感的函数名要做一个对称加密处理. 防止二进制文件的静态扫描. 3.对于调用私有函数的方法,可以做一个宏定义包装. #define 你的正常 ...

  7. CSS3学习笔记(1)—淡入的文字

    今天有空把前几天学的东西发一下,都是一些简单的东西,但是千里之行始于足下,我虽然走的慢,但是未停下前进的脚步, 下来看下我做的“淡入的文字”最终动态效果: 上面这个动画效果制作的过程是: (1)先自定 ...

  8. Eclipse jar打包详解

    通过Eclipse下的演示工程,介绍如何打包这样的项目:要导出的类里边用到了别的jar包. 方法/步骤     1. Eclipse下的演示工程结构如下图所示,其中Task.java是当前工程运行的M ...

  9. C++中指针和指针变量

    指针和指针变量的理解: #include<iostream> using namespace std; int main() { int n; int * m; m = &n; n ...

  10. HTML5 Canvas 时钟

    1. [图片] QQ截图20120712130049.png ​2. [代码][HTML]代码 <!DOCTYPE html><html lang="en" &g ...