Rooted Trees

Descriptions:

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

 
Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

 
Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

题目链接:

https://vjudge.net/problem/Aizu-ALDS1_7_A

题目大意:给你一个有根树的各个信息,输出它的父亲,深度,是什么性质的节点,子节点列表

输入0 - N-1节点的度和子节点(无序), 要求按照节点序号输出节点的相关信息
node id: parent = p , depth = d, type, [c1…ck]

具体做法都在代码上

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define ME0(x) memset(x,0,sizeof(x))
using namespace std;
struct node
{
int parent;
int left,right;//左子右兄弟表示法,l代表节点u的最左侧的子结点,r为u的右侧紧邻的兄弟节点
};
node a[];
int D[];
void getDepth(int u,int p)//递归求结点的深度
{
D[u]=p;
if(a[u].right!=-)//当前结点存在右侧兄弟节点,不改变深度
getDepth(a[u].right,p);
if(a[u].left!=-)//存在最左侧子结点,深度+1
getDepth(a[u].left,p+);
}
void print(int u)
{
cout<<"node "<<u<<": parent = "<<a[u].parent<<", depth = "<<D[u]<<", ";
if(a[u].parent==-)//不存在父结点,即为根节点
cout<<"root, [";
else if(a[u].left==-)//没有子结点,即为叶
cout<<"leaf, [";
else
cout<<"internal node, [";
for(int i=,c=a[u].left; c!=-; ++i,c=a[c].right)
{
if(i)
cout<<", ";
cout<<c;//节点u的子结点列表从u的左侧子结点开始按顺序输出,直到当前子结点不存在右侧兄弟节点为止
}
cout<<"]"<<endl; }
int main()
{
int n;
cin>>n;
for(int i=; i<n; ++i)//初始化
a[i].left=a[i].parent=a[i].right=-;
for(int i=; i<n; ++i)
{
int id,k;
cin>>id>>k;
for(int j=; j<k; ++j)
{
int c,l;
cin>>c;
if(j)
a[l].right=c;
else
a[id].left=c;
l=c;
a[c].parent=id;
}
}
int root;//根节点的编号
for(int i=; i<n; ++i)
if(a[i].parent==-)
root=i;
getDepth(root,);
for(int i=; i<n; ++i)
print(i);
}

【Aizu - ALDS1_7_A】Rooted Trees(树的表达)的更多相关文章

  1. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  2. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  3. Tree - Rooted Trees

    Rooted Trees A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a b ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. TZOJ 4292 Count the Trees(树hash)

    描述 A binary tree is a tree data structure in which each node has at most two child nodes, usually di ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. Disharmony Trees 树状数组

    Disharmony Trees Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  8. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

  9. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

随机推荐

  1. poj 2888 Magic Bracelet <polya定理>

    题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...

  2. mysql 修改语法格式

    1.修改字段注释格式 alter table {table} modify column {column} {type} comment '{comment}';

  3. SURF matlab 检测函数使用

    1.这篇介绍SURF检测blob的函数. 函数/Functions 函数名称:detectSURFFeatures 功能:利用The Speeded-Up Robust Features(SURF)算 ...

  4. Mac端博客发布工具推荐

    引子 推荐一款好用的 Mac 端博客发布工具. 下载地址 echo 博客对接 这里以cnblog为例.接入类型为metawebblog,access point可以在cnblog的设置最下边找到,然后 ...

  5. leetcode leetcode 783. Minimum Distance Between BST Nodes

    Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the ...

  6. 测试工程师面试题之:给你印象最深的Bug

    有人看到别人在侵淫面试技巧,什么<程序员面试宝典>,或者<面试测试工程师须知>等等,就会嗤之以鼻.他会觉得这不是“投机取巧”吗,最重要的还是踏实提高自己的能力. 非常同意这种看 ...

  7. c#设置系统时间后不起作用

    网上设置系统时间的代码很多,但是会出现设置后没有作用的问题 遇到以上问题可以按照如下办法解决 1.项目--属性--安全性--勾选启用ClickOne安全设置,如下图所示: 2.打开app.manife ...

  8. linux应用之perl环境的安装(centos)

    1.安装Perl环境 yum install perl*这个命令基本上把perl的模块给安装齐了.yum install cpanCPAN这个就不用说了吧,大家都懂. 如果你对perl模块版本要求比较 ...

  9. yii表单的各种验证

    /验证规则详细配置 public function rules() { // NOTE: you should only define rules for those attributes that ...

  10. SpringMVC 注释@PathVariable

    @PathVariable 是用来获得请求url中的动态参数的: @ResponseBody @RequestMapping(value="/pointUpload/{userid}&quo ...