洛谷 [P3455] ZAP
莫比乌斯函数
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
const int MAXN = 500005;
int T, a, b, k, miu[MAXN], prime[MAXN], tot, pre[MAXN];
bool f[MAXN];
void Euler_chk() {
f[1] = 1;miu[1] = 1;
for(int i = 2; i <= 50005; i++) {
if(!f[i]) {
prime[++tot] = i;
miu[i] = -1;
}
for(int j = 1; i * prime[j] <= 50005; j++) {
f[i * prime[j]] = 1;
if(i % prime[j] == 0) {
miu[i * prime[j]] = 0;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
}
int main() {
Euler_chk();
pre[1] = 1;
for(int i = 1; i <= 50005; i++) {
pre[i] = pre[i - 1] + miu[i];
}
cin >> T;
while(T--) {
cin >> a >> b >> k;
a /= k; b /= k;
int n = min(a, b);
ll ans = 0ll;
for(int i = 1, x; i <= n; i = x + 1) {
x = min(a / (a / i), b / (b / i));
ans += (ll)(pre[x] - pre[i - 1]) * (a / i) * (b / i);
}
cout << ans << endl;
}
return 0;
}
洛谷 [P3455] ZAP的更多相关文章
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301
https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】
这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...
- 【洛谷P3455】ZAP-Queries
题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] ...
- 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...
- 【刷题】洛谷 P3455 [POI2007]ZAP-Queries
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷P3455 [POI2007]ZAP-Queries
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...
随机推荐
- Python——字典dict()详解
一.字典 字典是Python提供的一种数据类型,用于存放有映射关系的数据,字典相当于两组数据,其中一组是key,是关键数据(程序对字典的操作都是基于key),另一组数据是value,可以通过key来进 ...
- Bootstrap历练实例:带链接的警告
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- 01_4_Struts路径问题
01_4_Struts路径问题 1. Struts路径问题说明 struts2中的路径问题是根据action的路径而不是jsp路径来确定,所有尽量不要使用相对路径. 虽然可以使用redirect方式解 ...
- 《linux设备驱动开发详解》笔记——14 linux网络设备驱动
14.1 网络设备驱动结构 网络协议接口层:硬件无关,标准收发函数dev_queue_xmit()和netif_rx(); 注意,netif_rx是将接收到的数据给上层,有时也在驱动收到数据以后调用 ...
- 《linux设备驱动开发详解》笔记——8阻塞与非阻塞IO
8.1 阻塞与非阻塞IO 8.1.0 概述 阻塞:访问设备时,若不能获取资源,则进程挂起,进入睡眠状态:也就是进入等待队列 非阻塞:不能获取资源时,不睡眠,要么退出.要么一直查询:直接退出且无资源时, ...
- python之函数基础总结
定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可. def sayhi(name): print("Hello, %s, I', nobo ...
- Linux磁盘简介
为一台服务器添加三块磁盘的体系结构情况 Linux系统中用free -l 查看磁盘的状况 说明: 1)buffers为写入缓冲区,sync将缓冲区数据写入磁盘,cache为读出缓存. 2)cac ...
- Linux学习-什么是 daemon 与服务 (service)
『常驻在记体体中的程序,且可以提供 一些系统或网络功能,那就是服务』.而服务一般的英文说法是『 service 』. 那么 daemon 与 service 有关啰?否则为什么都能够提供 某些系统或网 ...
- luogu3381 【模板】最小费用最大流
每次选代价最小的流增广 #include <iostream> #include <cstring> #include <cstdio> #include < ...
- ios开发讲解之anchorPoint和position详解
引言 相信初接触到CALayer的人都会遇到以下几个问题: 为什么修改anchorPoint会移动layer的位置? CALayer的position点是哪一点呢? anchorPoint与posi ...