莫比乌斯函数


#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
const int MAXN = 500005;
int T, a, b, k, miu[MAXN], prime[MAXN], tot, pre[MAXN];
bool f[MAXN];
void Euler_chk() {
f[1] = 1;miu[1] = 1;
for(int i = 2; i <= 50005; i++) {
if(!f[i]) {
prime[++tot] = i;
miu[i] = -1;
}
for(int j = 1; i * prime[j] <= 50005; j++) {
f[i * prime[j]] = 1;
if(i % prime[j] == 0) {
miu[i * prime[j]] = 0;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
}
int main() {
Euler_chk();
pre[1] = 1;
for(int i = 1; i <= 50005; i++) {
pre[i] = pre[i - 1] + miu[i];
}
cin >> T;
while(T--) {
cin >> a >> b >> k;
a /= k; b /= k;
int n = min(a, b);
ll ans = 0ll;
for(int i = 1, x; i <= n; i = x + 1) {
x = min(a / (a / i), b / (b / i));
ans += (ll)(pre[x] - pre[i - 1]) * (a / i) * (b / i);
}
cout << ans << endl;
}
return 0;
}

洛谷 [P3455] ZAP的更多相关文章

  1. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  2. 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301

    https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...

  3. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  4. 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】

    这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...

  5. 【洛谷P3455】ZAP-Queries

    题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] ...

  6. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  7. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  8. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  9. 洛谷P3455 [POI2007]ZAP-Queries

    题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...

随机推荐

  1. 计算机视觉2D几何基元及其变换介绍和OpenCV WarpPerspective源码分析

    2D图像几何基元 一般的,表示一个2d几何基元只用两个维度(比如x,y)就可以表示了,但是在计算机视觉研究中,为了统一对2d几何基元的操作(后面讲到的仿射,透射变换),一般会以增广矢量的方式表示几何基 ...

  2. ssh整合思想 Spring与Hibernate和Struts2的action整合 调用action添加数据库 使用HibernateTemplate的save(entity)方法 update delete get 等方法crud操作

    UserAction类代码: package com.swift.action; import com.opensymphony.xwork2.ActionSupport; import com.sw ...

  3. 洛谷P2347 砝码称重

    题目 貌似是某年提高组签到题,六重循环零压力AC,差点怒踩std 但本蒟蒻决定写正解——多重背包,果断20分 原因是写错了状态转移方程...神才知道我咋过的样例和两个测试点 扯远了 多重背包 简单说一 ...

  4. LeetCode之Weekly Contest 92

    第一题:转置矩阵 问题: 给定一个矩阵 A, 返回 A 的转置矩阵. 矩阵的转置是指将矩阵的主对角线翻转,交换矩阵的行索引与列索引. 示例 1: 输入:[[1,2,3],[4,5,6],[7,8,9] ...

  5. 21.Yii2.0框架多表关联一对多查询之性能优化--模型的使用

    控制器里 功能: 通过分类,查分类下的所有文章 //关联查询 public function actionRelatesearch(){ //关联查询 //查询方法一(查一行) 一维数组下的值是obj ...

  6. golang http 中间件

    golang http 中间件 源码链接 golang的http中间件的实现 首先实现一个http的handler接口 type Handler interface { ServeHTTP(Respo ...

  7. 网络流之Dinic算法

    初学网络流.存一下Dinic板子. 复杂度O(n^2*m) UVA - 1515 Pool construction 把每个草地与 S 相连,花费为dig,每个洞与 T 相连,花费为 然后对于每个两个 ...

  8. 动态规划:Codeforces Round #427 (Div. 2) C Star sky

    C. Star sky time limit per test2 seconds memory limit per test256 megabytes inputstandard input outp ...

  9. JVM执行子系统探究——类文件结构初窥

    类文件(.class)是搞java的都非常熟悉的文件,一般我们在编写java之后文件之后,首先通过javac工具生成.class类字节码文件,而后在执行程序的时候由虚拟机加载执行.那么为什么要生成.c ...

  10. HDU 4565 So Easy! 矩阵快速幂

    题意: 求\(S_n=\left \lceil (a+\sqrt{b})^n \right \rceil mod \, m\)的值. 分析: 设\((a+\sqrt{b})^n=A_n+B_n \sq ...