莫比乌斯函数


#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
const int MAXN = 500005;
int T, a, b, k, miu[MAXN], prime[MAXN], tot, pre[MAXN];
bool f[MAXN];
void Euler_chk() {
f[1] = 1;miu[1] = 1;
for(int i = 2; i <= 50005; i++) {
if(!f[i]) {
prime[++tot] = i;
miu[i] = -1;
}
for(int j = 1; i * prime[j] <= 50005; j++) {
f[i * prime[j]] = 1;
if(i % prime[j] == 0) {
miu[i * prime[j]] = 0;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
}
int main() {
Euler_chk();
pre[1] = 1;
for(int i = 1; i <= 50005; i++) {
pre[i] = pre[i - 1] + miu[i];
}
cin >> T;
while(T--) {
cin >> a >> b >> k;
a /= k; b /= k;
int n = min(a, b);
ll ans = 0ll;
for(int i = 1, x; i <= n; i = x + 1) {
x = min(a / (a / i), b / (b / i));
ans += (ll)(pre[x] - pre[i - 1]) * (a / i) * (b / i);
}
cout << ans << endl;
}
return 0;
}

洛谷 [P3455] ZAP的更多相关文章

  1. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  2. 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301

    https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...

  3. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  4. 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】

    这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...

  5. 【洛谷P3455】ZAP-Queries

    题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] ...

  6. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  7. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  8. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  9. 洛谷P3455 [POI2007]ZAP-Queries

    题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...

随机推荐

  1. [51nod] 1301 集合异或和

    考虑不限制xor{Y}>xor{X} 考虑n=m的情况,每个数i∈[1,n]可以被分配到X集合或Y集合,或不分配 设f[S]表示{X} xor {Y} == S的方案数 有f[S]+=2*f[S ...

  2. hash 哈希查找复杂度为什么这么低?

    hash 哈希查找复杂度为什么这么低? (2017-06-23 21:20:36) 转载▼   分类: c from: 作者:jillzhang 出处:http://jillzhang.cnblogs ...

  3. python-闭包函数和装饰器

    目录 闭包函数 什么是闭包? 两种为函数传参的方式 使用参数的形式 包给函数 闭包函数的应用 闭包的意义: 装饰器 无参装饰器 什么是装饰器 为什么要用装饰器 怎么用装饰器 完善装饰器 闭包函数 什么 ...

  4. hessian应用示例

    因为公司的项目远程调用采用的是hessian,故抽时间了解了下hessian,自己也写了一个应用实例,以便加深对hessian的理解. Hessian是一个轻量级的remoting onhttp工具, ...

  5. 01 Django基础知识

    相关概念 软件框架 一个公司是由公司中的各部部门来组成的,每一个部门拥有特定的职能,部门与部门之间通过相互的配合来完成让公司运转起来. 一个软件框架是由其中各个软件模块组成的,每一个模块都有特定的功能 ...

  6. Python之简单Socket编程

    Socket编程这块儿还是比较重要的,记录一下:实现服务器端和客户端通信(客户端发送系统指令,如ipconfig等,服务器端执行该指令,然后将指令返回结果给客户端再传过去,设置一次最多直接收1024字 ...

  7. poj 2385 树上掉苹果问题 dp算法

    题意:有树1 树2 会掉苹果,奶牛去捡,只能移动w次,开始的时候在树1 问最多可以捡多少个苹果? 思路: dp[i][j]表示i分钟移动j次捡到苹果的最大值 实例分析 0,1  1,2...说明 偶数 ...

  8. bash函数定义/使用/传参…

    函数:function, 功能     过程式编程,代码重用         模块化编程         简洁             语法:         function f_name {    ...

  9. [转] 彻底搞懂word-break、word-wrap、white-space

    white-space.word-break.word-wrap(overflow-wrap)估计是css里最基本又最让人迷惑的三个属性了,我也是用了n次都经常搞混,必须系统整理一下,今天我们就把这三 ...

  10. day37-- &MySQL step1

    m1.客户端与数据库服务器端是通过socket来交互数据,对数据库的理解:数据库就是一个文件夹,表就类比文件.m2.常用语句#查看数据库show databases:#创建数据库create data ...