数表(bzoj 3529)
Description
有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。
Input
输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
4 4 3
10 10 5
Sample Output
148
HINT
1 < =N.m < =10^5 , 1 < =Q < =2×10^4
/*
在PoPoQQQ的ppt上看的,感觉各种化简很神。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 1000010
using namespace std;
int prime[N],num,mul[N],t[N],mark[N],ans[N],mx;
struct node{int n,m,a,id;}q[N];
pair<int,int> F[N];
bool operator<(node a,node b){
return a.a<b.a;
}
void add(int x,int val){
for(int i=x;i<=mx;i+=i&-i) t[i]+=val;
}
int query(int x){
int tmp=;
for(int i=x;i;i-=i&-i) tmp+=t[i];
return tmp;
}
void get_prime(){
mul[]=;
for(int i=;i<=mx;i++){
if(!mark[i]) prime[++num]=i,mul[i]=-;
for(int j=;j<=num&&i*prime[j]<=mx;j++){
mark[i*prime[j]]=;
mul[i*prime[j]]=-mul[i];
if(i%prime[j]==){mul[i*prime[j]]=;break;}
}
}
for(int i=;i<=mx;i++)
for(int j=i;j<=mx;j+=i)
F[j].first+=i;
for(int i=;i<=mx;i++) F[i].second=i;
}
void solve(int x){
int id=q[x].id,n=q[x].n,m=q[x].m;
for(int i=,j;i<=q[x].n;i=j+){
j=min(n/(n/i),m/(m/i));
ans[id]+=(n/i)*(m/i)*(query(j)-query(i-));
}
}
int main(){
int Q;scanf("%d",&Q);
for(int i=;i<=Q;i++){
scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a);
if(q[i].n>q[i].m) swap(q[i].n,q[i].m);
mx=max(mx,q[i].n);q[i].id=i;
}
get_prime();
sort(q+,q+Q+);
sort(F+,F+mx+);
int now=;
for(int i=;i<=Q;i++){
while(now+<=mx&&F[now+].first<=q[i].a){
now++;
for(int j=F[now].second;j<=mx;j+=F[now].second)
add(j,F[now].first*mul[j/F[now].second]);
}
solve(i);
}
for(int i=;i<=Q;i++)
printf("%d\n",ans[i]&0x7fffffff);
return ;
}
数表(bzoj 3529)的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)
3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 数表(莫比乌斯+树状数组)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3529 题意:有一张n×m的数表,其第i行第j列的数值为能同时整除i和j的所有自然数 ...
- bzoj 3529 数表 莫比乌斯反演+树状数组
题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
- 3529: [Sdoi2014]数表 - BZOJ
Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...
- bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...
- BZOJ 3529 数表(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=3529 思路:令F(i)为i的约数和, 1<=x<=n,1<=y<=m G(i ...
- bzoj 3529 数表
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题目大意:令F(i)为i的约数和,多次询问对于1<=x<=n,1< ...
- ●BZOJ 3529 [Sdoi2014]数表
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...
随机推荐
- helm install
reference 前提:已安装k8s:v1.10.4 helm install on master(无需下载官方tar包) 链接:https://pan.baidu.com/s/1Ji3Ru1pTQ ...
- RabbitMQ 学习资料
https://www.rabbitmq.com/getstarted.html http://www.cnblogs.com/luxiaoxun/p/3918054.html http://back ...
- Bootstrap历练实例:交替的进度条
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- Title Case a Sentence-freecodecamp算法题目
Title Case a Sentence(中单词首字母大写) 要求 确保字符串的每个单词首字母都大写,其余部分小写. 像'the'和'of'这样的连接符同理. 思路 将句子小写化后用.split(& ...
- [BZOJ] 1441 Min
题意:给一堆数ai,求S=Σxiai,使得S最小且为正整数 根据裴蜀定理,一定存在ax+by=gcd(a,b),同理可以推广到n个整数 也就是说,在不考虑正负的情况下,所有数的gcd就是所求 #inc ...
- PHP使用FTP上传文件到服务器(实战篇)
我们在做开发的过程中,上传文件肯定是避免不了的,平常我们的程序和上传的文件都在一个服务器上,我们也可以使用第三方sdk上传文件,但是文件在第三方服务器上.现在我们使用PHP的ftp功能把文件上传到我们 ...
- linux下GPIO的用户层操作(sysfs)
linux的GPIO通过sysfs为用户提供服务,下面是linux kernel里的说明文档,学习一下. GPIO Sysfs Interface for Userspace ============ ...
- uncaught exception 'NSInternalInconsistencyException, reason:[UITableViewController loadView] loaded the "Controller" nib but didn't get a UITableView
http://blog.csdn.net/ryantang03/article/details/7941058#reply 上面那篇文章是我查找的ios实现下拉刷新功能,在我下载完代码运行的过程中发现 ...
- HDU:4185-Oil Skimming
Oil Skimming Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- Linux学习-Linux 的开机流程分析
开机流程一览 系统开机的经过可以汇整成底下的流程的: 加载 BIOS 的硬件信息与进行自我测试,并依据设定取得第一个可开机的装置; 读取并执行第一个开机装置内 MBR 的 boot Loader (亦 ...