xsy 1845 - GCD
from NOIP2016模拟题34
Description
给定一个长度\(n\le 10^6\)的序列, 给定\(A, B\)
给出一个序列,要求你通过如下两个操作使得序列中所有数的最大公约数大于1,每个操作最多使用一次
1:删除一段连续的数,代价为删除的长度$*A $
2:将任意多个数+1或-1,代价为 \(B *\)数的个数
Analysis
由于删除也至少留下一个数
最后的gcd一定是a[1]-1,a[1],a[1]+1,a[n]-1,a[n],a[n]+1六个数中
某个数的质因数的倍数
Solution
考虑每个可能的质因数:
two_pointer搞出删除的区间
其他用修改操作
预处理出哪些数必须修改chg[i]
哪些数必须删除must[i]
若对当前two_pointer区间
修改要修改的数优于区间删除
就将左区间右移一下
two_pointer移的时候要保证合法
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int M=1000007;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n;
int a[M];
int fac[M*12],cnt=0;
LL A,B;
LL chg[M];
LL must[M];
LL ans=9223372036854775807;
void solve(int p){
int i,l,r;
for(i=1;i<=n;i++){
chg[i]=must[i]=0;
if (a[i] % p == 0) continue;
if((a[i]+1)%p==0||(a[i]-1)%p==0) chg[i]=1;
else if(a[i]%p) must[i]=1;
}
for(i=1;i<=n;i++) chg[i]+=chg[i-1];
for(i=1;i<=n;i++) must[i]+=must[i-1];
for(l=1,r=1;r<=n;r++){//two_pointer求删除区间
if(must[n]-must[r]) continue;//不合法
if(l==1&&r==n) l=2;//不能全删
while(l<=r&&must[l]==0&&(chg[r]-chg[l-1])*B<=(r-l+1)*A) l++;//更优且移动和合法
ans=min(ans,(chg[l-1]+chg[n]-chg[r])*B+(r-l+1)*A);
}
}
void split(int x){
for(int i=2;i*i<=x;i++){
if(x%i==0) fac[++cnt]=i;
while(x%i==0) x/=i;
}
if(x>2) fac[++cnt]=x;
}
int main(){
int i;
n=rd(),A=rd(),B=rd();
for(i=1;i<=n;i++) a[i]=rd();
split(a[1]); split(a[1]-1); split(a[1]+1);
split(a[n]); split(a[n]-1); split(a[n]+1);
sort(fac+1,fac+cnt+1);
cnt=unique(fac+1,fac+cnt+1)-(fac+1);
for(i=1;i<=cnt;i++)
solve(fac[i]);
printf("%lld\n",ans);
return 0;
}
xsy 1845 - GCD的更多相关文章
- POJ 1845 (约数和+二分等比数列求和)
题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...
- Objective-C三种定时器CADisplayLink / NSTimer / GCD的使用
OC中的三种定时器:CADisplayLink.NSTimer.GCD 我们先来看看CADiskplayLink, 点进头文件里面看看, 用注释来说明下 @interface CADisplayLin ...
- iOS 多线程之GCD的使用
在iOS开发中,遇到耗时操作,我们经常用到多线程技术.Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法,只需定义想要执行的任务,然后添加到适当的调度队列 ...
- 【swift】BlockOperation和GCD实用代码块
//BlockOperation // // ViewController.swift import UIKit class ViewController: UIViewController { @I ...
- 修改版: 小伙,多线程(GCD)看我就够了,骗你没好处!
多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系 ...
- GCD的相关函数使用
GCD 是iOS多线程实现方案之一,非常常用 英文翻译过来就是伟大的中枢调度器,也有人戏称为是牛逼的中枢调度器 是苹果公司为多核的并行运算提出的解决方案 1.一次性函数 dispatch_once 顾 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
随机推荐
- 拨出网线后,网卡IP丢失
/etc/network/interfaces与NetworkManager 问题:在Centos7上把网线拨出后,发现网卡状态是down,并且网卡上的IP丢失 原因:此网卡被NetworkManag ...
- 03_2_JAVA中的面向对象与内存解析
03_2_JAVA中的面向对象与内存解析 1. 成员变量 成员变量可以是Java语言中任何一种数据类型(包括基本数据类型和引用数据类型) 在定义成员变量时可以对其初始化,如果不对其初始化,Java使用 ...
- 微信iOS多设备多字体适配方案总结
一.背景 2014下半年,微信iOS版先后适配iPad, iPhone6/6plus.随着这些大屏设备的登场,部分用户觉得微信的字体太小,但也有很多用户不喜欢太大的字体.为了满足不同用户的需求,我们做 ...
- C#MySQL增删改查
首先在项目中添加引用 using MySql.Data.MySqlClient; 连接字符串 private string connString="server=localhost;use ...
- python从列表中删除相邻重复元素
这里以一个栗子来用三种方法实现,输入a=['1','1','2','2','1','1'],输出b=['1', '2', '1'] 方法一: list1 = ['] def del_adjacent( ...
- 【laravel】Disabling CSRF for Specific Routes - Laravel 5
原文 http://www.camroncade.com/disable-csrf-for-specific-routes-laravel-5/ Disabling CSRF for Specific ...
- Python头脑风暴2
今天想到了一个致富新途径:假如我在X东上班,我写个X宝爬虫,专门爬在X宝买奢侈品的土豪,然后我自己注册个X宝号,用脚本一个个加他们然后给他们发信息说我X东这还有比你更便宜更好的...不知道行不行啊(狗 ...
- nrf51822微信开发入门学习笔记1:开始前的准备
参考:(id:love--baby)https://blog.csdn.net/hunhun1122/article/details/68922493 微信硬件平台:https://iot.weixi ...
- LeetCode(290) Word Pattern
题目 Given a pattern and a string str, find if str follows the same pattern. Here follow means a full ...
- 算法导论 第七章 快速排序(python)
用的最多的排序 平均性能:O(nlogn){随机化nlogn} 原地址排序 稳定性:不稳定 思想:分治 (切分左右) 学习方式:自己在纸上走一遍 def PARTITION(A,p,r): x = ...