BZOJ_5415_[Noi2018]归程_kruscal重构树+倍增+最短路
BZOJ_5415_[Noi2018]归程_kruscal重构树+倍增
Description
www.lydsy.com/JudgeOnline/upload/noi2018day1.pdf
好久不写题解了,趁着周末都更一下吧。
处理出以1为起点的最短路dis。
考虑每次只能走海拔大于p的边,用kruscal重构树维护一个以海拔为关键字的最大生成树。
这样我们每次能走的连通块就是一个重构树中的一个子树。
倍增找一下是哪棵子树,子树取dis的最小值即可。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace std;
#define N 400050
#define M 400050
#define inf 2147483647
typedef long long ll;
__attribute__((optimize("-O3")))inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
__attribute__((optimize("-O3")))int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
char pbuf[100000],*pp=pbuf;
__attribute__((optimize("-O3")))void push(const char c) {
if(pp-pbuf==100000) fwrite(pbuf,1,100000,stdout),pp=pbuf;
*pp++=c;
}
__attribute__((optimize("-O3")))void write(int x) {
static int sta[35];
int top=0;
do{sta[top++]=x%10,x/=10;}while(x);
while(top) push(sta[--top]+'0');
}
int head[N],to[M<<1],nxt[M<<1],cnt,f[23][N],mn[N],val[M<<1],n,m,dis[N],vis[N],Lg[N];
int fa[N],w[N];
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
struct E {
int x,y,z,w;
bool operator < (const E &u) const {
return w>u.w;
}
}e[M];
__gnu_pbds::priority_queue<pair<int,int> >q;
__attribute__((optimize("-O3")))inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
__attribute__((optimize("-O3")))void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
__attribute__((optimize("-O3")))void dij() {
int i;
for(i=1;i<=n;i++) dis[i]=2147483647;
dis[1]=0;
memset(vis,0,sizeof(vis));
q.push(make_pair(0,1));
while(!q.empty()) {
int x=q.top().second,i; q.pop();
if(vis[x]) continue;
vis[x]=1;
if(dis[x]==inf) continue;
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
q.push(make_pair(-dis[to[i]],to[i]));
}
}
}
}
__attribute__((optimize("-O3")))void dfs(int x) {
int i;
if(x<=n) mn[x]=dis[x];
else mn[x]=inf;
for(i=head[x];i;i=nxt[i]) {
f[0][to[i]]=x;
dfs(to[i]);
mn[x]=min(mn[x],mn[to[i]]);
}
}
__attribute__((optimize("-O3")))void solve() {
memset(head,0,sizeof(head)); cnt=0;
memset(f,0,sizeof(f));
n=rd(); m=rd();
int i,x,y,j;
for(i=1;i<=m;i++) {
e[i].x=rd(); e[i].y=rd(); e[i].z=rd(); e[i].w=rd(); add(e[i].x,e[i].y,e[i].z); add(e[i].y,e[i].x,e[i].z);
}
dij();
memset(head,0,sizeof(head)); cnt=0;
sort(e+1,e+m+1);
for(Lg[0]=-1,i=1;i<=2*n;i++) fa[i]=i,Lg[i]=Lg[i>>1]+1;
int tot=n;
for(i=1;i<=m;i++) {
int dx=find(e[i].x),dy=find(e[i].y);
if(dx==dy) continue;
tot++; fa[dx]=tot; fa[dy]=tot; add(tot,dx); add(tot,dy); w[tot]=e[i].w;
}
dfs(tot);
for(i=1;(1<<i)<=tot;i++) {
for(j=1;j<=tot;j++) {
f[i][j]=f[i-1][f[i-1][j]];
}
}
int opt,cas,S;
cas=rd(); opt=rd(); S=rd();
int ans=0;
while(cas--) {
x=rd(); y=rd();
x=(ll(x)+opt*ans-1)%n+1;
y=(ll(y)+opt*ans)%(S+1);
for(i=Lg[tot];i>=0;i--) {
if(!f[i][x]) continue;
if(w[f[i][x]]>y) x=f[i][x];
}
ans=mn[x];
write(ans); push('\n');
}
}
__attribute__((optimize("-O3")))int main() {
// freopen("return.in","r",stdin);
// freopen("return.out","w",stdout);
int T;
T=rd();
while(T--) solve();
fwrite(pbuf,1,pp-pbuf,stdout);
}
BZOJ_5415_[Noi2018]归程_kruscal重构树+倍增+最短路的更多相关文章
- BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra
题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...
- LOJ.2718.[NOI2018]归程(Kruskal重构树 倍增)
LOJ2718 BZOJ5415 洛谷P4768 Rank3+Rank1无压力 BZOJ最初还不是一道权限题... Update 2019.1.5 UOJ上被hack了....好像是纯一条链的数据过不 ...
- [NOI2018]归程 kruskal重构树
[NOI2018]归程 LG传送门 kruskal重构树模板题. 另一篇文章里有关于kruskal重构树更详细的介绍和更板子的题目. 题意懒得说了,这题的关键在于快速找出从查询的点出发能到达的点(即经 ...
- [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)
洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...
- 洛谷P4768 [NOI2018]归程(Kruskal重构树)
题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...
- BZOJ 5415: [Noi2018]归程(kruskal重构树)
解题思路 \(NOI2018\)的\(Day1\) \(T1\),当时打网络赛的时候不会做.学了一下\(kruskal\)重构树后发现问题迎刃而解了.根据\(kruskal\)的性质,如果要找从\(u ...
- 洛谷$P4768\ [NOI2018]$归程 $kruscal$重构树
正解:$kruscal$重构树 解题报告: 传送门$QwQ$ 语文不好选手没有人权$TT$连题目都看不懂真的要哭了$kk$ 所以先放个题目大意?就说给定一个$n$个点,$m$条边的图,每条边有长度和海 ...
- NOI2018Day1T1 归程 并查集 kruskal kruskal重构树 倍增表 Dijkstra
原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day1T1.html 题目传送门 - 洛谷P4768 题意 给定一个无向连通图,有 $n$ 个点 ...
- NOI Day1T1归程(Kruskal重构树+Dijkstra)
NOI Day1T1归程(Kruskal重构树+Dijkstra) 题目 洛谷题目传送门 题解 其实我不想写......,所以...... 挖个坑......我以后一定会补的 luogu的题解讲的还是 ...
随机推荐
- lfu-cache(需要O(1),所以挺难的)
https://leetcode.com/problems/lfu-cache/ 很难,看了下面的参考: https://discuss.leetcode.com/topic/69137/java-o ...
- 算法之美--2.3.1 Z字形编排问题
2016-12-08 00:23:11 写在前面的话:万事贵在坚持,万事开头难,有很多的东西要学,要知道主次,讲究效率,大的方向对就行!坚持........ 一.图像压缩编码中的Z字排序 JPEG ...
- 分布式版本号控制系统Git(二):github
前言 但凡是喜欢研究技术,或者听大牛们说起过的,都应该至少是听过github这个东西.详细就不介绍了.不了解的能够去了解了解,最基本的功能当然是代码托管啦,上面有各种各样的大牛写的项目. 另外这一章不 ...
- 利用VideoView播放视频
package com.qianhua.ui; 002 003 import android.app.Activity; 004 import android.content.Intent; 00 ...
- angular 资源路径问题
1.templateUrl .component("noData",{ templateUrl:"components/noData.html" // 注意相对 ...
- mysql binlog配置详解
关闭binlog,注释掉mysql配置文件中的log-bin=mysql-bin即可 baidu zone - 关闭binlog方法 cnblogs - linux下mysql配置文件my ...
- 笔记08 WPF导航
如何在winform中做导航,如何重定向界面,就产生了争执. 是用window还是Page还是UserControl? 先不管用啥.我们先比较一下各自的优缺点. 在WPF中使用导航,内容被组织在Pag ...
- angularJS contenteditable 指令双向绑定
项目遇到需求有点奇葩:双击div使其可编辑,失去焦点后进行数据绑定 通过自定义指令完成 好了上代码: .directive('contentEditable', function() { return ...
- Vuex demo
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- C#实现网段扫描
目录1.使用的类2.获取本地主机IP地址3.远程查询4.实现网段的扫描 ---------------------------------------------------------------- ...