POJ 2976 Dropping tests:01分数规划【二分】
题目链接:http://poj.org/problem?id=2976
题意:
共有n场考试,每场考试你得的分数为a[i],总分为b[i]。
你可以任意去掉k场考试。
问你最大的 100.0 * ( ∑ a[i] / ∑ b[i] )的值。(四舍五入)
题解:
相当于从n场考试中选n-k场。
二分:
二分最大答案 ∑ a[i] / ∑ b[i] >= L
即:∑ a[i] - ∑(b[i]*L) >= 0
check函数:
求数组val[i] = a[i] - b[i]*L
将val排序。
取最大的n-k个val[i],求和为sum。
若sum >= 0则满足条件,lef = mid.
否则rig = mid.
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MAX_N 1005
#define INF 10000000
#define EPS 0.000001 using namespace std; int n,m;
double ans;
double a[MAX_N];
double b[MAX_N];
double val[MAX_N]; void read()
{
for(int i=;i<n;i++)
{
scanf("%lf",&a[i]);
}
for(int i=;i<n;i++)
{
scanf("%lf",&b[i]);
}
} bool is_legal(double x)
{
for(int i=;i<n;i++)
{
val[i]=a[i]-x*b[i];
}
sort(val,val+n);
double sum=;
for(int i=n-;i>=m;i--)
{
sum+=val[i];
}
return sum>=;
} void solve()
{
double lef=;
double rig=;
while(rig-lef>EPS)
{
double mid=(lef+rig)/2.0;
if(is_legal(mid)) lef=mid;
else rig=mid;
}
ans=lef;
} void print()
{
printf("%.0f\n",ans*100.0);
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n== && m==) break;
read();
solve();
print();
}
}
POJ 2976 Dropping tests:01分数规划【二分】的更多相关文章
- POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))
题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests 01分数规划
给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...
- $POJ$2976 $Dropping\ tests$ 01分数规划+贪心
正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...
- [poj 2976] Dropping tests (分数规划 二分)
原题: 传送门 题意: 给出n个a和b,让选出n-k个使得(sigma a[i])/(sigma b[i])最大 直接用分数规划.. code: //By Menteur_Hxy #include & ...
- POJ 2976 Dropping tests(分数规划)
http://poj.org/problem?id=2976 题意: 给出ai和bi,ai和bi是一一配对的,现在可以删除k对,使得的值最大. 思路: 分数规划题,可以参考<挑战程序竞赛> ...
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8176 Accepted: 2862 De ...
- POJ - 3111 K Best 0-1分数规划 二分
K Best Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 12812 Accepted: 3290 Case Time ...
- POJ2976 Dropping tests —— 01分数规划 二分法
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
随机推荐
- 如何使用优化代码段替代WordPress插件
每一个WordPress网站,都可以通过使用插件来获得更多的功能.但是太多的插件,会拖慢站点的运行速度,并且让站点看上去臃肿不堪. 一些插件的功能让你舍不得卸载,但是其实你可以使用简单的PHP代码来替 ...
- apue学习笔记(第十五章 进程间通信)
本章将说明进程之间相互通信的其它技术----进程间通信(IPC) 管道 管道只能在具有公共祖先的两个进程之间只用.通常,一个管道由一个进程创建,在进程调用fork后,这个管道就能在父进程和子进程之间使 ...
- 【BIEE】数据透视表格第一列添加序号
现在有这么一个需求,需要在数据透视图的表格前面条件一列序号,作为行号,如下图: 那么实现这个如何实现呢? 只需要在BIEE分析编辑界面,新建一列,然后公式定义为:RCOUNT(RSUM(1)) ,保存 ...
- DDR电源硬件设计要点
一.DDR电源简介 1. 电源 DDR的电源可以分为三类: a.主电源VDD和VDDQ,主电源的要求是VDDQ=VDD,VDDQ是给IO buffer供电的电源,VDD是给但是一般的使用中都是把VDD ...
- Snubber电路
http://www.elecfans.com/yuanqijian/dianrongqi/20170601520736.html https://wenku.baidu.com/view/166f1 ...
- WebRTC for android ios开发官方指南
The WebRTC native code package can be found at: https://chromium.googlesource.com/external/webrtc ht ...
- sqlite3常用操作命令 和mysql的区别及优缺点
SQLite 的数据库权限只依赖于文件系统,没有用户帐户的概念. sqlite3 testdb.db .databases 命令查看数据库列表 create table tbl(name char(1 ...
- iOS文档预览功能教程
本文转载至 http://blog.csdn.net/devday/article/details/6580444 文档iosuinavigationcontrollerextensionmic ...
- delphi 颜色 引用http://www.cnblogs.com/del/archive/2008/02/19/1073568.html
颜色名称 颜色效果 Hex HTML clBlack $000000 #000000 clMaroon $000080 #800000 clGreen $008000 #00800 ...
- 【BZOJ3745】[Coci2015]Norma cdq分治
[BZOJ3745][Coci2015]Norma Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. ...