在两个字符串中,有些字符会一样,可以形成的子序列也有可能相等,因此,长度最长的相等子序列便是两者间的最长公共字序列,其长度可以使用动态规划来求。

以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例。

借用《算法导论》中的推导图:

创建 DP数组C[][];

图中的空白格子需要填上相应的数字(这个数字就是c[i][j]的定义,记录的LCS的长度值)。填的规则依据递归公式,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化该表:

然后,一行一行地从上往下填:

S1的元素3 与 S2的元素3 相等,所以 c[2,1] = c[1,0] + 1。继续填充:

S1的元素3 与 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),图中c[1,2] 和 c[2,1] 背景色为浅黄色。

继续填充:

中间几行填写规则不变,直接跳到最后一行:

至此,该表填完。根据性质,c[8,9] = S1 和 S2 的 LCS的长度,即为5。

得到公式

代码

#include<iostream>

#include<cstdio>

#include<cstring>

#include<string>

using namespace std;

const int MAXN = 1005;

int DP[MAXN][MAXN];

int main()

{

string a;

string b;

while(cin >> a >> b)

{

int l1 = a.size();

int l2 = b.size();

memset(DP, 0, sizeof(DP));

for(int i = 1; i <= l1; i++)

for(int j = 1; j <= l2; j++)

if(a[i - 1] == b[j - 1])

DP[i][j] = max(DP[i][j], DP[i - 1][j - 1] + 1);

else

DP[i][j] = max(DP[i][j - 1], DP[i - 1][j]);

printf("%d\n", DP[l1][l2]);

}

return 0;

}

当得到完整的DP表之后,我们可以通过倒推来得到相应的子序列

S1和S2的最LCS并不是只有1个,本文并不是着重讲输出两个序列的所有LCS,只是介绍如何通过上表,输出其中一个LCS。

我们根据递归公式构建了上表,我们将从最后一个元素c[8][9]倒推出S1和S2的LCS。

c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值来源于c[8][8]的值(因为c[8][8] > c[7][9])。

c[8][8] = 5,  且S1[8] = S2[8], 所以倒推回去,c[8][8]的值来源于 c[7][7]。

以此类推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,这里请都选择一个方向(之后遇到这样的情况,也选择相同的方向)。

第一种结果为:

这就是倒推回去的路径,棕色方格为相等元素,即LCS = {3,4,6,7,8},这是其中一个结果。

如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。

即LCS ={3,5,7,7,8}。

在倒推时,如果s1[i] == s2[j] 就跳转到c[i - 1][j - 1],如果s1[i] != s1[j], 就向前找或向上找(只能一个方向)

PS:在代码中和解说中代码细节有所不同,在解说图中s从下标1开始,在代码中从下标0开始。

---------------------

作者:someone_and_anyone

来源:CSDN

原文:https://blog.csdn.net/someone_and_anyone/article/details/81044153

LCS最大公共子序列【转载】的更多相关文章

  1. python3 lcs 最大公共子序列

    抛出问题: 假定字符串 s1 = 'BDCABA', s2 = 'ABCBDAB',求s1和s2的最大公共子序列. 问题分析: 我们想要求出s1和s2的最大公共子序列,我们可以用c(i,j)表示s1( ...

  2. LCS最大公共子序列问题

    在生物应用中,经常需要比较两个(或多个)不同生物体的DNA, 例如:某种生物的DNA可能为S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, 另一种生物的DNA可能为S2=GTCGTT ...

  3. 动态规划之LCS(最大公共子序列)

    #include <stdio.h> #include <string.h> int b[50][50]; int c[50][50]; int length = 0; voi ...

  4. Poj1159 Palindrome(动态规划DP求最大公共子序列LCS)

    一.Description A palindrome is a symmetrical string, that is, a string read identically from left to ...

  5. Advanced Fruits (最大公共子序列的路径打印)

    The company "21st Century Fruits" has specialized in creating new sorts of fruits by trans ...

  6. hdu 1243 反恐训练营(dp 最大公共子序列变形)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1243 d[i][j] 代表第i 个字符与第 j 个字符的最大的得分.,, 最大公共子序列变形 #inclu ...

  7. spoj Longest Common Substring (多串求最大公共子序列)

    题目链接: https://vjudge.net/problem/SPOJ-LCS 题意: 最多10行字符串 求最大公共子序列 数据范围: $1\leq |S| \leq100000$ 分析: 让他们 ...

  8. POJ - 2250 Compromise (LCS打印序列)

    题意:给你两个单词序列,求出他们的最长公共子序列. 多组数据输入,单词序列长度<=100,单词长度<=30 因为所有组成LCS的单词都是通过 a[i] == b[j] 更新的. 打印序列的 ...

  9. Common Subsequence 最大公共子序列问题

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

随机推荐

  1. 冷门PHP函数汇总

    概述 整理一些日常生活中基本用不到的PHP函数,也可以说在框架内基本都内置了,无需我们去自行使用的函数.量不多.后续在日常开发中如遇到更多的冷门,会更新本文章 sys_getloadavg 获取系统的 ...

  2. Python网络编程--Echo服务

    Python网络编程--Echo服务 学习网络编程必须要练习的三个小项目就是Echo服务,Chat服务和Proxy服务.在接下来的几篇文章会详细介绍. 今天就来介绍Echo服务,Echo服务是最基本的 ...

  3. SpringMVC的API和Spring的官方说明文档的地址。

    SpringMVC的API和Spring的官方说明文档的地址. 1.SpringMVC的API的URL: http://docs.spring.io/spring/docs/current/javad ...

  4. tkinter之对话框

    对话框的一个例子: from tkinter.dialog import * from tkinter import * def investigation(): d=Dialog(None,titl ...

  5. BZOJ 1192 [HNOI2006]鬼谷子的钱袋:二进制 砝码称重问题

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1192 题意: 鬼谷子带了a元钱,他要把a元钱分装在小袋子中,使得任意不大于a的数目的钱,都 ...

  6. layer 插件 在子页面关闭自身的方法

    先取到该子页面在父级页面中的name 值 var  index= parent.layer.getFrameIndex(Window.name); 然后用该方法关闭 parent.layer.clos ...

  7. 配置 git 以ssh公钥访问github

    #生成ssh config touch .ssh/config chmod 600 config 填写: Host github.com User betachen Hostname ssh.gith ...

  8. Eclipse_配置_00_资源帖

    1.Eclipse常用设置 2.eclipse设置和优化 3.Eclipse在工作中的一些常用设置及快捷键整理 4.Eclipse常用插件下载地址

  9. linux 进程学习笔记-消息队列messagequeue

    可以想象,如果两个进程都可以访问同一个队列:其中一个进程(sender)向其中写入结构化数据,另外一个进程(receiver)再从其中把结构化的数据读取出来.那么这两个进程就是在利用这个队列进行通信了 ...

  10. Trie 树内存消耗问题

    大家都知道,Trie树(又称字典树)是一种树型数据结构,用于保存大量的字符串.它的优点是:利用字符串的公共前缀来节约存储空间. 相对来说,Trie树是一种比较简单的数据结构,比较易于理解.话说上帝是公 ...