Til the Cows Come Home

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

 
题意:给你一个图,途中每一条边都带有权值(路径长度),求从1到n的最短路径。
思路:单元最短路问题,首先想到Dijkstra。在这里把最基础的Dij O(n^2)与邻接表存图、堆优化的Dij O((n+m)logn)作个比较。
ps:史上最坑题!没有之一!首先是题目和样例的t、n顺序不同很容易误导爆RE。。再一个就是重  边  问  题!基础Dij会WA。。这题还有数据范围也...总之还是先把基础打好。

 
基础Dij:贪心思想
Dijkstra 思路是维护一个集合 s ,集合内的点是已经确定最短路的点,可以视为一个大整体
每次操作找出距离这个集合源点最近的点(dis最小)加入集合中,
并确定它的最短路为它的上家的最短路+该边权值,存在 dis 中(松弛操作:更新该点与集合外直接相连点的dis)
这里通过b标记点是否存在于集合,n-1次操作即可,dis最终结果为各点与单源点之间的最短路径
 
ps:Dij不能跑有负权边的图和最长路(负权边可用spfa但不能处理负环,最长路的贪心是错的,可将边权值*-1转化为spfa求最短路),
Dij可通过priority_queue堆优化,每次pop弹出的点相当于加入集合的点,这里省去了扫最近点的时间

#include<stdio.h>
#include<string.h>
#include<limits.h> int a[][];
int dis[],b[];
int n; int min(int x,int y)
{
return x<y?x:y;
} void dij(int k)
{
int i,j,mind,minj;
memset(b,,sizeof(b));
for(i=;i<=n;i++){
dis[i]=INT_MAX;
}
dis[k]=;
for(i=;i<n;i++){
mind=INT_MAX;
for(j=;j<=n;j++){
if(!b[j]&&dis[j]<mind){
mind=dis[j];
minj=j;
}
}
b[minj]=;
for(j=;j<=n;j++){
if(!b[j]&&a[minj][j]>=){
dis[j]=min(dis[j],dis[minj]+a[minj][j]);
}
}
}
} int main()
{
int t,x,y,z;
memset(a,-,sizeof(a));
scanf("%d%d",&t,&n);
while(t--){
scanf("%d%d%d",&x,&y,&z);
if(a[x][y]!=-){
if(z<a[x][y]){
a[x][y]=z;
a[y][x]=z;
}
}
else{
a[x][y]=z;
a[y][x]=z;
}
}
dij();
printf("%d\n",dis[n]);
return ;
}

优化Dij:

#include<stdio.h>
#include<string.h>
#include<limits.h>
#include<vector>
#include<queue>
using namespace std; struct Node{
int v,w;
friend bool operator<(Node a,Node b)
{
return a.w>b.w;
}
}node; vector<Node> a[];
int dis[];
int n; void dij(int k)
{
int v1,v2,i;
priority_queue<Node> q;
dis[k]=;
node.w=;
node.v=k;
q.push(node);
while(q.size()){
v1=q.top().v;
q.pop();
for(i=;i<a[v1].size();i++){
v2=a[v1][i].v;
if(dis[v2]>dis[v1]+a[v1][i].w){
dis[v2]=dis[v1]+a[v1][i].w;
node.w=dis[v2];
node.v=v2;
q.push(node);
}
}
}
} int main()
{
int t,x,y,z,i;
scanf("%d%d",&t,&n);
for(i=;i<=n;i++){
a[i].clear();
dis[i]=INT_MAX;
}
while(t--){
scanf("%d%d%d",&x,&y,&z);
node.w=z;
node.v=y;
a[x].push_back(node);
node.v=x;
a[y].push_back(node);
}
dij();
printf("%d\n",dis[n]);
return ;
}

POJ 2387 Til the Cows Come Home Dijkstra求最短路径的更多相关文章

  1. Poj 2387 Til the Cows Come Home(Dijkstra 最短路径)

    题目:从节点N到节点1的求最短路径. 分析:这道题陷阱比较多,首先是输入的数据,第一个是表示路径条数,第二个是表示节点数量,在 这里WA了四次.再有就是多重边,要取最小值.最后就是路径的长度的最大值不 ...

  2. poj 2387 Til the Cows Come Home(dijkstra算法)

    题目链接:http://poj.org/problem?id=2387 题目大意:起点一定是1,终点给出,然后求出1到所给点的最短路径. 注意的是先输入边,在输入的顶点数,不要弄反哦~~~ #incl ...

  3. POJ 2387 Til the Cows Come Home (Dijkstra)

    传送门:http://poj.org/problem?id=2387 题目大意: 给定无向图,要求输出从点n到点1的最短路径. 注意有重边,要取最小的. 水题..对于无向图,从1到n和n到1是一样的. ...

  4. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  5. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

  6. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  7. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  8. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

  9. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

随机推荐

  1. 扩容数据盘_Linux

    扩容数据盘_Linux_扩容云盘_云盘_用户指南_云服务器 ECS-阿里云 https://help.aliyun.com/document_detail/25452.html 磁盘扩容付费后: 在控 ...

  2. 【linux】让普通用户执行root的程序

    再有些时候,比如zabbix监控中,需要使用netstat命令查看当前网络链接状态,但是zabbix用户没有权限执行netstat,会导致监控失败,为此使用如下即可解决 chmod +s /bin/n ...

  3. PAT 甲级 1041. Be Unique (20) 【STL】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1041 思路 可以用 map 标记 每个数字的出现次数 然后最后再 遍历一遍 找到那个 第一个 ...

  4. [egret+pomelo]实时游戏杂记(2)

    [egret+pomelo]学习笔记(1) [egret+pomelo]学习笔记(2) [egret+pomelo]学习笔记(3) pomelo pomelo服务端介绍(game-server/con ...

  5. hihocoder #1152 Lucky Substrings 【字符串处理问题】strsub()函数+set集合去重

    #1152 : Lucky Substrings时间限制:10000ms单点时限:1000ms内存限制:256MB描述A string s is LUCKY if and only if the nu ...

  6. oracle数据库用户创建删除以及数据导入

    dmp文件的导入:1.首先,先创建表空间与用户--创建表空间create tablespace CCFOCUS01datafile 'D:\app\Administrator\oradata\orcl ...

  7. nginx的fastcgi_param参数详解

    在配置nginx的时候,有很多fastcgi_param参数,具体对应是什么值呢 引入:fastcgi_params 文件: fastcgi_params文件具体内容: postman 发送请求: n ...

  8. ASCII UNICODE UTF "口水文"

    最近接了一个单是需要把非 UTF-8 (No BOM)编码的文件转换成 UTF-8 (No BOM),若此文件是 UTF-8 但带有 BOM ,需要转换成不带 BOM 的.于是开启了一天的阅读.首先花 ...

  9. swift的泛型貌似还差点意思

    protocol Container { typealias ItemType mutating func append(item: ItemType) mutating func removelas ...

  10. 解决Linux Kettle出现闪退问题

    linux环境, 运行sh spoon.sh打开图形化界面时经常出现闪退情况. 报错信息如下: cfgbuilder - Warning: The configuration parameter [o ...