hdu 4135 Co-prime(容斥)
Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2307 Accepted Submission(s): 861
1 10 2
3 15 5
Case #2: 10
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
题意:求A到B之间的数有多少个与n互质。
首先转化为(1---B)与n互质的个数减去(1--- A-1)与n互质的个数
然后就是求一个区间与n互质的个数了,注意如果是求(1---n)与n互质的个数,可以用欧拉函数,但是这里不是到n,所以无法用欧拉函数。
这里用到容斥原理,即将求互质个数转化为求不互质的个数,然后减一下搞定。
求互质个数的步骤:
1、先将n质因数分解
2、容斥原理模板求出不互质个数ans
3、总的个数减掉不互质个数就得到答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
#define ll long long
#define N 1000000
ll A,B,n;
vector<ll> v;
ll solve(ll x,ll n)
{
v.clear();
for(ll i=;i*i<=n;i++) //对n进行素数分解
{
if(n%i==)
{
v.push_back(i);
while(n%i==)
n/=i;
}
}
if(n>) v.push_back(n); ll ans=;
for(ll i=;i<( <<v.size() );i++)//用二进制来1,0来表示第几个素因子是否被用到,如m=3,三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到
{
ll sum=;
ll tmp=;
for(ll j=;j<v.size();j++)
{
if((<<j)&i) //判断第几个因子目前被用到
{
tmp=tmp*v[j];
sum++;
}
}
if(sum&) ans+=x/tmp;//容斥原理,奇加偶减
else ans-=x/tmp;
}
return x-ans;
}
int main()
{
int t;
int ac=;
scanf("%d",&t);
while(t--)
{
scanf("%I64d%I64d%I64d",&A,&B,&n);
printf("Case #%d: ",++ac);
printf("%I64d\n",solve(B,n)-solve(A-,n));
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define ll long long
#define N 1000000
ll A,B,n;
ll fac[N];
ll solve(ll x,ll n)
{
ll num=;
for(ll i=;i*i<=n;i++)
{
if(n%i==)
{
fac[num++]=i;
while(n%i==)
n/=i;
}
}
if(n>) fac[num++]=n; ll ans=;
for(ll i=;i<(<<num);i++)
{
ll sum=;
ll tmp=;
for(ll j=;j<num;j++)
{
if((<<j)&i)
{
tmp=tmp*fac[j];
sum++;
}
}
if(sum&) ans+=x/tmp;
else ans-=x/tmp;
}
return x-ans;
}
int main()
{
int t;
int ac=;
scanf("%d",&t);
while(t--)
{
scanf("%I64d%I64d%I64d",&A,&B,&n);
printf("Case #%d: ",++ac);
printf("%I64d\n",solve(B,n)-solve(A-,n));
}
return ;
}
hdu 4135 Co-prime(容斥)的更多相关文章
- HDU 4135 Co-prime(容斥+数论)
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- [HDU4135]CO Prime(容斥)
也许更好的阅读体验 \(\mathcal{Description}\) \(t\)组询问,每次询问\(l,r,k\),问\([l,r]\)内有多少数与\(k\)互质 \(0<l<=r< ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
随机推荐
- linux查看系统版本
RHEL7.0以下,查看系统版本的方式: [rusky@rheltest1 ~]$ cat /proc/version Linux version -.el6.x86_64 (mockbuild ...
- Word03-文档中的截图显示不全
今天写文档时遇到个很蛋疼的问题,在doc文档中复制进去的截图总是显示不全,图片上半部分都被文字遮盖了,折腾半天,最后还是网上找到了答案. 解决方法如下: 将图片所在行的段落行距修改为其它值即可,原来为 ...
- Mac打造python2 python3开发环境
最新版的MacOS Sierra默认带的python环境仍然为2.7.10,本文将介绍使用Brew安装python3.5并做简单的配置,打造python2,python3共存的开发环境 直接尝试bre ...
- Mindset + Know-how+Concepture + Methodology+Technology
在做成都专案过程中深刻体会到一个IT全才应该具备Domain Know-how,拥有正确地理念是十分重要的, 我想只能是某几个领域,专案管理,专案运行中的各种手法,即Methodology,最后才是K ...
- 移动端(IOS)iframe监听不到 onscroll 事件
问题描述: 我在一个页面A中有瀑布流,点击瀑布流中的图片需要进入到另外一个页面B,点击返回需要回到页面A中点击的位置,为了实现该效果所以在页面A中嵌入iframe,iframe指向页面B,页面B中同样 ...
- css中的clear的正真意义
网上包括w3cschool 的说法都是 不允许浮动.消除浮动 这样的说法,却看了还是不知道什么意思,一些地方说不通. 所以找到w3c css 的英文文档,如下是节选: 'clear'Values ha ...
- Android Intent到底能做些什么
Android Intent到底能做些什么 原文:http://www.toutiao.com/i6348296465147757058/?tt_from=mobile_qq&utm_camp ...
- Edwin windows下基本命令:
Ctrl-Alt-z: 对区域内所有代码求值. Ctrl-x Ctrl-e: 对光标左边或上一个表达式求值. Ctrl-c Ctrl-x: 中断当前求值. Ctrl-a: 移动到行首. Ctrl-e: ...
- UIColor各种颜色转换
1.Hex值颜色转换 #import <UIKit/UIKit.h> @interface UIColor (Extension) // 根据无符号的32位整数转换为对应的RGB颜色 + ...
- _CrtMemBlockHeader
typedef struct _CrtMemBlockHeader{// Pointer to the block allocated just before this one:struct _Crt ...