linux下的文件权限
在学习linux中,发现linux系统对文件的权限管理要比windows非常严格。
linux下建立新的组:groupadd 组名
linux新建立用户:useradd username
创建用户并分组: useradd -g 组名 username
查看用户信息: cat /etc/passwd 或 vi /etc/passwd当中cat命令仅仅能查看,没有改动权限,vi命令既有查看权限,又有改动权限(也就是读/写权限)
eg:新建两个组:A组和B组
新建两个用户:a和b
当中a用户属于A组,b用户属于B组。
当b用户想要訪问a用户的文件的时候,必需要让a用户给对应的权限。
使用命令:chmod 777 a
然后使用:ls -l会出现
drwxrwxr-x这样一串字符,当中第一个是文件类型,后面三个一组,分别表示对当前用户权限,当前组用户权限,其它组用户权限。
w:可写 表示值:2
r:可读 表示值:4
x:可运行 表示值:1
当中777表示对全部用户都有可读可写可运行权限,由于1+2+4=7,是吧。没人说比較难理解。。
当想让b用户到A组,就要在管理员权限下使用:usermod -g A b。
linux下的文件权限的更多相关文章
- Linux下修改文件权限,所有权
Linux与Unix是多用户操作系统,所以文件的权限与所有权的实现就显得很有必要:每个文件主要与三组权限打交道,分别是用户(user),用户组(group),其他用户(other) 用户(u)是文件的 ...
- linux下的文件权限管理
权限管理有两个层面 第一层区分用户:文件属主(u), 组用户(g), 其它(o) 第二层区分权限:读(r),写(w),可执行(x) 这两个层次构成文件权限管理的二维结构 u g ...
- 关于linux下的文件权限
在ls指令加 -l 参数能看到文件权限 就像这样: drwxrwxr-x 2 asml users 4096 Jul 24 02:45 desktop 第一个d表示这是个目录,若为"-&qu ...
- Linux下设置文件权限
文件权限示意图: 第一步:在终端创建用户 增加用户 useradd 用户名 设置密码 passwd 用户名 通过上述两条命令创建a1,a2两个用户. 第二步:在根目录使用管理员账号创建一个文件 在使用 ...
- linux下修改文件权限
加入-R 参数,就可以将读写权限传递给子文件夹例如chmod -R 777 /home/mypackage那么mypackage 文件夹和它下面的所有子文件夹的属性都变成了777777是读.写.执行权 ...
- Linux下查看文件权限、修改文件权限的方法
查看权限命令查看目录的相关权限可以采用命令ls -lD,或者直接用ls -la 如 ls -l www.jb51.net //这里表示查看www.jb51.net目录 修改权限命令 chmod 77 ...
- Linux下的文件与目录权限
一.用户(User).群组(Group)和其他人(Others) linux是多用户多任务的操作系统,同一时刻可能会有多个用户登录系统,考虑到文件的安全性等问题,所以Linux下的文件都属于一个特定的 ...
- Linux(三)__文件权限、系统的查找、文本编辑器
一.文件权限 1.理解文件权限及其分配 2.掌握查看文件和目录的权限 3.掌握权限文字表示法和数值表示法 4.学会使用chmod命令设置权限 5.学会使用chown命令修改属主和组 linux文件能不 ...
- Linux命令:修改文件权限命令chmod、chgrp、chown详解
Linux系统中的每个文件和目录都有访问许可权限,用它来确定谁可以通过何种方式对文件和目录进行访问和操作. 文件或目录的访问权 限分为只读,只写和可执行三种.以文件为例,只读权限表示只允许读其内容,而 ...
随机推荐
- 10条影响CSS渲染速度的写法与建议
1.*{} #zishu *{} 尽量避开由于不同浏览器对HTML标签的解释有差异,所以最终的网页效果在不同的浏览器中可能是不一样的,为了消除这方面的风险,设计者通常会在CSS的一个始就把所有标签的默 ...
- 安卓中onBackPressed ()方法的使用
一.onBackPressed()方法的解释 这个方法放在 void android.app.Activity.onBackPressed() 在安卓API中它是这样解释的: public void ...
- iOS 时钟动画
在iOS开发中,定时器NSTimer并不能够准确的出发,通常使用NSTimer只能控制不需要精确处理的操作,而CADisplayLink就是在每次屏幕刷新时,通知系统.CADisplayLink最大的 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- 八皇后问题-回溯法(MATLAB)
原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能 ...
- javascript的isPrototypeOf函数的理解
JavaScript中isPrototypeOf函数方法是返回一个布尔值,指出对象是否存在于另一个对象的原型链中.使用方法: object1.isPrototypeOf(object2)~~~原型链理 ...
- HDU 1398 Square Coins
题目大意:有面值分别为.1,4,9,.......17^2的硬币无数多个.问你组成面值为n的钱的方法数. 最简单的母函数模板题: #include <cstdio> #include &l ...
- golang实现udp接入服务器
前端通过udp与接入服务器连接,接入服务器与后端tcp服务器维持tcp连接.目录结构及后端tcp服务器代码同上一篇博客. main.go package main import ( "lot ...
- 设计模式的C++实现 2.工厂模式
工厂模式,实例化对象,用工厂方法取代new操作. 工厂模式基本与简单工厂模式差点儿相同,简单工厂中每次加入一个子类必须在工厂类中加入一个推断分支,这违背了开闭原则.而工厂模式的解决方法是将简单工厂中的 ...
- 数据科学家:神话 & 超能力持有者
一个打破神话的季节,正在降临. 我将坦诚地揭穿人们关于数据科学家所持有的惯有看法.在下文中,我将一个一个展示这些观点,宛如将一个又一个的玻璃瓶子摔碎在墙壁上一样. 关于数据 ...