最大公因数与最小公倍数-gcd&lcm
一、一些性质
\(gcd(a,b)=gcd(b,a)\)
\(gcd(-a,b)=gcd(a,b)\)
\(gcd(a,a)=|a|, gcd(a,0)=|a|\)
\(gcd(a,1)=1\)
\(gcd(a,b)=gcd(b, a mod b)\)
\(gcd(a,b)=gcd(b, a-b)\)
\(gcd(a,b)*lcm(a,b)=ab\)
\(a|t,b|t⇒lcm(a,b)\)
\(...\)
二、最大公约数-gcd
1.欧几里得辗转相除法
证明:
设\(a=qb+r\),\(d|a\)且\(d|b\),
\(∵a=qb+r,\)
\(∴r=a-qb,\)
\(∵d|a\)且\(d|b\)
\(∴d | a -qb\)
\(∴d | r\)
\(∴a,b\)的公因数都是\(b,r\)的公因数
\(∴gcd(a,b)=gcd(b,r)\)
代码实现:
int gcd(int a, int b){
return b == 0 ? a : gcd(b , a % b);
}
2.stein_gcd算法
代码实现:
int stein(int a, int b) {
if (a == 0) return b;
if (b == 0) return a;
if (a % 2 == 0 && b % 2 == 0) return stein(a >> 1, a >> 1) * 2; //当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k
else if (a % 2 == 0) return stein(a >> 1, b); //因为只有一个数含有2作为因数,所以除以2后gcd(a,b)不变
else if (b % 2 == 0) return stein(a, b >> 1); //同上
else return stein(abs(a - b), min(a, b)); //详情请查看'更相减损数'
}
三、最小公倍数-lcm
基于gcd(a,b)*lcm(a,b)=ab这条性质则可求出最小公倍数
好像stein算法不是很常用,但的确弥补了欧几里得算法的一些缺点
最大公因数与最小公倍数-gcd&lcm的更多相关文章
- Mathematics:GCD & LCM Inverse(POJ 2429)
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...
- C++实现--最大公因数和最小公倍数
一丶 最大公因数求法: 辗转相除法(也称欧几里得算法)原理: 二丶最小公倍数求法:两个整数的最小公倍数等于两整数之积除以最大公约数 C++ 代码实现 #include <iostream ...
- POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...
- hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 数论3——gcd&&lcm
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- 模板 求GCD&LCM
求最大公倍数 int GCD(int a,int b) { ) return b; else return GCD(b,a%b); } 求最小公倍数 int LCM(int a,int b) { re ...
- POJ2429 GCD & LCM Inverse pollard_rho大整数分解
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
随机推荐
- hdu-1593 find a way to escape(贪心,数学)
思路:两个人都要选取最优的策略. 先求外层那个人的角速度,因为他的角速度是确定的,再求内层人的当角速度和外层人一样时的对应的圆的半径r1.外层圆的半径为d; 那么如果r1>=外围圆的半径,那么肯 ...
- sql-labs 1-14
less-1: 1.采用二分法进行猜列: http://192.236.147.191:30000/Less-1/?id=1' order by 10--+ Welcome Dhakkan Un ...
- 对XSS的插入的新了解,灵感来自天驿安全
此次针对的是通过Get请求进行插入的XSS语句,或者dom型的xss,也算是了解到的新的插入方式 首先,JavaScript语言中存在拼接性 可以通过代审后闭合前置语句进行self测试是否可以拼接 s ...
- C++ switch 语句的用法
C++ 判断 一个 switch 语句允许测试一个变量等于多个值时的情况.每个值称为一个 case,且被测试的变量会对每个 switch case 进行检查. C++ 中 switch 语句的语法: ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Conditional Generative Adversarial Nets
目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...
- CapstoneCS5265|TYPEC转HDMI 4K60HZ转换方案设计|CS5265功能介绍
芯片简介描述:CS5265集成了一个DP1.4的转换器HDMI2.0转换.此外,CC控制器还用于CC通信,以实现DP Alt模式. CS5265是一种高度集成的单芯片,适用于多个细分市场和显示应用,如 ...
- 大二 mysql高级+html响应式+Java高级50道试题
1.CSS3中过渡属性 transition-timing-function的值包括哪些 A. ease B. inline C. ease-in D. easeout 答案:A,C 解析:过渡属性 ...
- Eclipse 常用快捷键大全
15 个 Eclipse 常用开发快捷键使用技巧 1.alt+? 或 alt+/:自动补全代码或者提示代码 2.ctrl+o:快速outline视图 3.ctrl+shift+r:打开资源列表 4.c ...
- 使用 JavaScript 中的 document 对象的属性,根据下拉框中选择的属性,更改页面中的字体颜色和背景颜色
查看本章节 查看作业目录 需求说明: 使用 JavaScript 中的 document 对象的属性,根据下拉框中选择的属性,更改页面中的字体颜色和背景颜色 实现思路: 在页面的 <body&g ...