Solution -「AGC 013E」「AT 2371」Placing Squares
\(\mathcal{Description}\)
Link.
给定一个长度为 \(n\) 的木板,木板上有 \(m\) 个标记点,第 \(i\) 个标记点距离木板左端点的距离为 \(x_i\),现在你需要在木板上放置一些不相交正方形,正方形需要满足:
正方形的边长为整数。
正方形底面需要紧贴木板。
正方形不能超出木板,正方形要将所有的木板覆盖。
标记点的位置不能是两个正方形的交界处。
求所有合法放置方案的正方形面积的乘积之和。对 \(10^9+7\) 取模。
\(n\le10^9\),\(m\le10^5\)。
\(\mathcal{Solution}\)
嘛……有时候题意转换……就挺突然的 qwq。
你有 \(n\) 个空格排成一行,格子边缘可以放隔板,其中第一格左侧和最后一格右侧必须放,标记位置不能放。然后在每两块隔板间放两个不同色的小球,可以放同一个位置。求方案数。
不难证明与原问题等价。我们来考虑这个新问题。
令 \(f(i,0/1/2)\) 表示前 \(i\) 个位置放好球,其中最后一段区间已经放了 \(0/1/2\) 个球的方案数。转移:
- 不放隔板:
f(i,0)&=f(i-1,0)\\
f(i,1)&=f(i-1,1)+f(i-1,0)\\
f(i,2)&=f(i-1,2)+2f(i-1,1)+f(i-1,0)
\end{aligned}
\]
- 放隔板:
\]
实际上只需要“随便放”和“不放”两种选择,把状态写成列向量 \(\begin{bmatrix}f(i,0)\\f(i,1)\\f(i,2)\end{bmatrix}\),构造两种转移矩阵:
- 不放:
1&0&0\\
2&1&0\\
1&1&1
\end{bmatrix}
\]
- 随便放:
2&1&1\\
2&1&0\\
1&1&1
\end{bmatrix}
\]
在相邻两个标记点之间矩阵快速幂加速 DP 即可。复杂度 \(\mathcal O(3^3m\log n)\)。
\(\mathcal{Code}\)
#include <cstdio>
#include <assert.h>
typedef long long LL;
const int MAXM = 1e5, MOD = 1e9 + 7;
int n, m;
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mul ( LL a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
struct Matrix {
int n, m, mat[3][3];
Matrix (): n ( 0 ), m ( 0 ), mat {} {}
Matrix ( const int tn, const int tm ): n ( tn ), m ( tm ), mat {} {}
inline int* operator [] ( const int key ) { return mat[key]; }
inline Matrix operator * ( Matrix t ) {
assert ( m == t.n );
Matrix ret ( n, t.m );
for ( int i = 0; i < n; ++ i ) {
for ( int k = 0; k < m; ++ k ) {
for ( int j = 0; j < t.m; ++ j ) {
ret[i][j] = add ( ret[i][j], mul ( mat[i][k], t[k][j] ) );
}
}
}
return ret;
}
};
inline Matrix qkpow ( Matrix a, int b ) {
Matrix ret ( a.n, a.m );
for ( int i = 0; i < ret.n; ++ i ) ret[i][i] = 1;
for ( ; b; a = a * a, b >>= 1 ) if ( b & 1 ) ret = ret * a;
return ret;
}
Matrix I ( 3, 1 ), A ( 3, 3 ), B ( 3, 3 );
inline void init () {
I[0][0] = 1;
A[0][0] = 1;
A[1][0] = 2, A[1][1] = 1;
A[2][0] = A[2][1] = A[2][2] = 1;
B = A, ++ B[0][0], ++ B[0][1], ++ B[0][2];
}
int main () {
init ();
n = rint (), m = rint ();
int las = 0;
for ( int i = 1, x; i <= m; ++ i ) {
x = rint ();
I = A * qkpow ( B, x - las - 1 ) * I;
las = x;
}
I = A * qkpow ( B, n - las - 1 ) * I;
printf ( "%d\n", I[2][0] );
return 0;
}
Solution -「AGC 013E」「AT 2371」Placing Squares的更多相关文章
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- Linux上天之路(十四)之Linux数据处理
主要内容 数据检索 数据排序 数据去重 重定向 1. 数据检索 常和管道协作的命令 – grep grep:用于搜索模式参数指定的内容,并将匹配的行输出到屏幕或者重定向文件中,常和管道协作的命令 – ...
- python驱动SAP完成数据导出(二)
在上一篇 python驱动SAP完成数据导出(一)中,我们提到了数据导出前,SAP布局的重要性,如何识别当前布局模式,以及如何切换到想要的布局.本篇小爬将着重讲讲数据导出的注意事项. 我们可以通过如下 ...
- 创建app子应用,配置数据库,编写模型,进行数据迁移
文章目录 web开发django模型 1.创建app子应用 2.配置子应用 3.使用 4.配置子应用管理自已的路由 django数据库开发思维与ORM 1.创建数据库 2.配置数据库 3.安装pymy ...
- vue2如何根据不同的环境配置不同的baseUrl
在正常的开发中,通常我们需要在线上的测试环境中运行代码来检查是否有些线上才会出现的bug或者是问题.每次去特意的修改我们的baseUrl显然是不现实的,而且说不定哪天忘记了估计会被大佬喷死 首先,这是 ...
- python极简教程08:对象的方法
测试奇谭,BUG不见. 讲解之前,我先说说我的教程和网上其他教程的区别: 1 我分享的是我在工作中高频使用的场景,是精华内容: 2 我分享的是学习方法,亦或说,是指明你该学哪些.该重点掌握哪些内容: ...
- 网络编程-HTTP cookie
目录 1.cookie的起源 2.cookie是什么? 3.创建cookie 3.1.响应首部 Set-Cookie 3.2.请求首部 Cookie 3.3.Document.cookie 4.HTT ...
- 【记录一个问题】golang中的time.Now()非常慢
对一个代码做profile: 总函数调用 29.74s 20.25s 153: timestamp := time.Now().Unix() 这样的一行占了20.25秒. 我知道linux下 time ...
- 适配器模式(Adapter模式)
模式的定义与特点 适配器模式(Adapter)的定义如下:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作.适配器模式分为类结构型模式和对象结构型模式 ...
- [转载]Python 资源大全中文版
[转载]Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python ...
- golang中的反射解析结构体标签tag
package main import ( "fmt" "reflect" ) type resume struct { // 反射解析结构体标签tag Nam ...