【Gym101137K】Knights of the Old Republic(生成树 DP)
大意
给定\(N\)个点\(M\)条边的一张图,其中:
每个点有两个属性\(A_i,B_i\),表示你需要至少\(A_i\)个士兵来攻占该点,而空投一个士兵至该点需要Bi的花费。
每条边都有一个属性\(C_i\),表示如果该边的两个端点的士兵数量之和大于了\(C_i\),那么这条边就被打通了,即士兵可以自由通过该边。
求:攻占过所有点的最小代价。
(\(1\le N \le 3\cdot 10^5\))
思路
首先,最小生成树经典算法Kruskal直接套,把边按值从小到大排序。
考虑一条边所连接的两个连通块如何合并。
设\(Dp[i]\)表示点集\(i\)被攻占完的最下代价,则:
\(Dp[s+t]\)的值为Min(\(Dp[s]+Dp[t]\),打通这条边情况下的最小值)
贪心地想,若这两个连通块总共需要\(K\)个士兵,则这\(K\)个士兵一定是从这两个连通块中有着最小的\(A\)值的点空降的,这样可以满足代价最小。
同时,这样放也可以利用Kruskal的性质:之前放的边值一定都小于当前边值,所以如果要加入这条边,那么之前的边一定都会被打通。
综上:
先把所有边按边权排序,然后在不断合并两个连通块的同时,
动态维护连通块内的最小花费,最大需求与答案值。
出解。
代码
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=300005;
const long long ONE=1;
int N,M,Fa[MAXN];
int Mx[MAXN],Mi[MAXN];
struct Edge{int x,y,z;}s[MAXN];
bool cmp(Edge A,Edge B){return A.z<B.z;}
int Find(int x){return Fa[x]==x?x:Fa[x]=Find(Fa[x]);}
long long Ans,Dp[MAXN];
int main(){
scanf("%d%d",&N,&M);
for(int i=1,x,y;i<=N;i++){
scanf("%d%d",&x,&y);
Fa[i]=i;Dp[i]=ONE*x*y;
Mi[i]=y;Mx[i]=x;
}
for(int i=1;i<=M;i++)
scanf("%d%d%d",&s[i].x,&s[i].y,&s[i].z);
sort(s+1,s+M+1,cmp);
for(int i=1;i<=M;i++){
int x=Find(s[i].x);
int y=Find(s[i].y);
if(x==y)continue;Fa[x]=y;
Mi[y]=min(Mi[x],Mi[y]);
Mx[y]=max(s[i].z,max(Mx[x],Mx[y]));
Dp[y]=min(Dp[x]+Dp[y],ONE*Mi[y]*Mx[y]);
}
for(int i=1;i<=N;i++)
if(Find(i)==i)Ans+=Dp[i];
printf("%lld\n",Ans);
}
【Gym101137K】Knights of the Old Republic(生成树 DP)的更多相关文章
- 2016 NEERC, Moscow Subregional Contest K. Knights of the Old Republic(Kruskal思想)
2016 NEERC, Moscow Subregional Contest K. Knights of the Old Republic 题意:有一张图,第i个点被占领需要ai个兵,而每个兵传送至该 ...
- @gym - 101137K@ Knights of the Old Republic
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点 M 条边的一张图. 每个点有两个属性 Ai, B ...
- 2016-2017 ACM-ICPC, NEERC, Moscow Subregional Contest
A. Altitude 从小到大加入每个数,用set查找前驱和后继即可. 时间复杂度$O(n\log n)$. #include <bits/stdc++.h> using namespa ...
- 3d引擎列表
免费引擎 Agar - 一个高级图形应用程序框架,用于2D和3D游戏. Allegro library - 基于 C/C++ 的游戏引擎,支持图形,声音,输入,游戏时钟,浮点,压缩文件以及GUI. A ...
- 2019 wannafly winter camp day1-4代码库
目录 day1 F div1 爬爬爬山 (最短路) B div2 吃豆豆 (dp) J div2 夺宝奇兵(暴力) J div1 夺宝奇兵 (权值线段树) C div1 拆拆拆数 E div1 流流流 ...
- HDU5697 刷题计划 dp+最小乘积生成树
分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...
- 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...
- CCPC-Wannafly Winter Camp Day3 Div1 - 精简改良 - [生成树][状压DP]
题目链接:https://zhixincode.com/contest/14/problem/D?problem_id=206 样例输入 1 5 5 1 2 1 1 3 1 2 4 1 2 5 1 ...
- [BZOJ1494][NOI2007]生成树计数 状压dp 并查集
1494: [NOI2007]生成树计数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 793 Solved: 451[Submit][Status][ ...
随机推荐
- .net core获取本地Ip地址的方法
笔记: /// <summary> /// 获取本地Ip地址 /// </summary> /// <returns></returns> public ...
- 初识python:斐波拉契数(列表获取)
使用 列表 获取斐波拉契数,代码如下: n = int(input('您想获取前几个斐波拉契数?\n')) li = [] for i in range(n): if i <= 1: li.ap ...
- CentOS7查询端口占用,清除端口占用的程序,开放端口,打开防火墙
1.根据端口号得到其占用的进程的详细信息 netstat -tlnp|grep 80tcp 0 0 192.168.33.10:80 0.0.0.0:* ...
- 经典变长指令-ModRM
一.如何计算ModRM 0X88 MOV Eb,Gb G:通用寄存器 0X89 MOV Ev,Gv E:寄存器/内存 0X8A MOV Gb,Eb b:字节 0X8B MOV Gv,Ev v:Word ...
- Java 集合详解 | 一篇文章解决Java 三大集合
更好阅读体验:Java 集合详解 | 一篇文章搞定Java 三大集合 好看的皮囊像是一个个容器,有趣的灵魂像是容器里的数据.接下来讲解Java集合数据容器. 文章篇幅有点长,还请耐心阅读.如只是为了解 ...
- Microsoft Store 桌面应用发布流程(一)之打包应用
这篇博客主要是介绍桌面应用打包的流程,应用发布流程请看 Microsoft Store 桌面应用发布流程(二)之提交应用 1. 创建打包项目 打开现有的桌面应用项目.选择解决方案项目,右键选择 添加新 ...
- C#winform控件序列化,反序列化
using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System. ...
- gin框架中图形验证码的生成和验证
功能和验证码使用原理 本案例中没有使用redis作为缓存,而是使用的内存存储方法 github链接地址 下载命令 go get github.com/mojocn/base64Captcha 请求处理 ...
- How to check in Windows if you are using UEFI
You might be wondering if Windows is using UEFI or the legacy BIOS, it's easy to check. Just fire up ...
- Idea内存设置idea.vmoptions无效的解决办法
原因:貌似是因为maven的问题 解决办法 结果