POJ 3264:Balanced Lineup(区间最值查询ST表&线段树)
Balanced Lineup
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 75294 | Accepted: 34483 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
题意
查询区间内最大值和最小值的差值
解决
解法一:ST表
通过O(n*log(n))的预处理后,在O(1)的时间内查询出区间最值。
预处理的本质是DP,定义一个dp数组dp[i][j],dp[i][j]表示:从第i个数起,连续2^j个数的最值,可以很容易得到:dp[i][0]就是第i个数的本身
接下来可以得到转移方程:dp[i][j]=max(dp[i][j-1],dp[i+2^(j-1)][j-1])
然后我们可以通过预处理求出所有位置的dp数组的值
在查询的时候,先算出所求区间的长度对2取对数,即求出上述方程中的j,然后用方程O(1)查询即可
解法二:线段树
代码
ST表
1 #include <iostream>
2 #include <algorithm>
3 #include <cmath>
4 #define ll long long
5 #define ull unsigned long long
6 #define ms(a,b) memset(a,b,sizeof(a))
7 const int inf=0x3f3f3f3f;
8 const ll INF=0x3f3f3f3f3f3f3f3f;
9 const int maxn=1e6+10;
10 const int mod=1e9+7;
11 const int maxm=1e3+10;
12 using namespace std;
13 // rmq[i][j]表示从i开始的第2^i位上的最大/最小值
14 // rmq[i][j]=max(rmq[i][j-1],rmq[i+(1<<(j-1))][j-1])
15 int rmq_max[maxn][30];
16 int rmq_min[maxn][30];
17 int a[maxn];
18 int main(int argc, char const *argv[])
19 {
20 #ifndef ONLINE_JUDGE
21 freopen("/home/wzy/in.txt", "r", stdin);
22 freopen("/home/wzy/out.txt", "w", stdout);
23 srand((unsigned int)time(NULL));
24 #endif
25 ios::sync_with_stdio(false);
26 cin.tie(0);
27 int n,q;
28 cin>>n>>q;
29 for(int i=1;i<=n;i++)
30 cin>>a[i],rmq_min[i][0]=a[i],rmq_max[i][0]=a[i];
31 for(int j=1;(1<<j)<=n;j++)
32 for(int i=1;i+(1<<(j-1))-1<=n;i++)
33 rmq_min[i][j]=min(rmq_min[i][j-1],rmq_min[i+(1<<(j-1))][j-1]),rmq_max[i][j]=max(rmq_max[i][j-1],rmq_max[i+(1<<(j-1))][j-1]);
34 while(q--)
35 {
36 int x,y;
37 cin>>x>>y;
38 int z=(int)(log(y-x+1)/log(2));
39 int ans=max(rmq_max[x][z],rmq_max[y-(1<<z)+1][z])-min(rmq_min[x][z],rmq_min[y-(1<<z)+1][z]);
40 cout<<ans<<"\n";
41 }
42 #ifndef ONLINE_JUDGE
43 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
44 #endif
45 return 0;
46 }
线段树
不太会线段树,代码略丑
1 #include <iostream>
2 #include <algorithm>
3 #define ll long long
4 #define ull unsigned long long
5 #define ms(a,b) memset(a,b,sizeof(a))
6 const int inf=0x3f3f3f3f;
7 const ll INF=0x3f3f3f3f3f3f3f3f;
8 const int maxn=1e6+10;
9 const int mod=1e9+7;
10 const int maxm=1e3+10;
11 using namespace std;
12 int a[maxn];
13 struct wzy
14 {
15 int value_min,value_max;
16 }p[maxn];
17 inline int lson(int p){return p<<1;}
18 inline int rson(int p){return p<<1|1;}
19 inline void push_max(int o)
20 {
21 p[o].value_max=max(p[lson(o)].value_max,p[rson(o)].value_max);
22 }
23 inline void push_min(int o)
24 {
25 p[o].value_min=min(p[lson(o)].value_min,p[rson(o)].value_min);
26 }
27 void build(int o,int l,int r)
28 {
29 if(l==r)
30 {
31 p[o].value_min=p[o].value_max=a[l];
32 return ;
33 }
34 int mid=(l+r)>>1;
35 build(lson(o),l,mid);
36 build(rson(o),mid+1,r);
37 push_max(o);
38 push_min(o);
39 }
40 int res,res1;
41 int query_min(int nl,int nr,int l,int r,int o)
42 {
43 if(nl<=l&&nr>=r)
44 return min(res,p[o].value_min);
45 int mid=(l+r)>>1;
46 if(nl<=mid)
47 res=query_min(nl,nr,l,mid,lson(o));
48 if(nr>mid)
49 res=query_min(nl,nr,mid+1,r,rson(o));
50 return res;
51 }
52 int query_max(int nl,int nr,int l,int r,int o)
53 {
54 if(nl<=l&&nr>=r)
55 return max(res1,p[o].value_max);
56 int mid=(l+r)>>1;
57 if(nl<=mid)
58 res1=query_max(nl,nr,l,mid,lson(o));
59 if(nr>mid)
60 res1=query_max(nl,nr,mid+1,r,rson(o));
61 return res1;
62 }
63 int main(int argc, char const *argv[])
64 {
65 #ifndef ONLINE_JUDGE
66 freopen("/home/wzy/in.txt", "r", stdin);
67 freopen("/home/wzy/out.txt", "w", stdout);
68 srand((unsigned int)time(NULL));
69 #endif
70 ios::sync_with_stdio(false);
71 cin.tie(0);
72 int n,q;
73 cin>>n>>q;
74 for(int i=1;i<=n;i++)
75 cin>>a[i];
76 build(1,1,n);
77 int x,y;
78 while(q--)
79 {
80 cin>>x>>y;
81 res=inf;res1=0;
82 cout<<query_max(x,y,1,n,1)-query_min(x,y,1,n,1)<<"\n";
83 }
84 #ifndef ONLINE_JUDGE
85 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
86 #endif
87 return 0;
88 }
POJ 3264:Balanced Lineup(区间最值查询ST表&线段树)的更多相关文章
- POJ 3264 Balanced Lineup 区间最值
POJ3264 比较裸的区间最值问题.用线段树或者ST表都可以.此处我们用ST表解决. ST表建表方法采用动态规划的方法, ST[I][J]表示数组从第I位到第 I+2^J-1 位的最值,用二分的思想 ...
- poj 3264 Balanced Lineup 区间极值RMQ
题目链接:http://poj.org/problem?id=3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) alw ...
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ 3264 Balanced Lineup -- RMQ或线段树
一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- poj 3264 Balanced Lineup【RMQ-ST查询区间最大最小值之差 +模板应用】
题目地址:http://poj.org/problem?id=3264 Sample Input 6 3 1 7 3 4 2 5 1 5 4 6 2 2 Sample Output 6 3 0分析:标 ...
- POJ 3264 Balanced Lineup 【线段树/区间最值差】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...
随机推荐
- WebRTC本地分享屏幕,录制屏幕
WebRTC有分享屏幕的功能.使用的是getDisplayMedia方法.用户同意分享屏幕后,可以拿到视频流. 再结合MediaRecorder和Blob,把视频流数据存下来,就能得到录制屏幕的视频. ...
- day07 ORM中常用字段和参数
day07 ORM中常用字段和参数 今日内容 常用字段 关联字段 测试环境准备 查询关键字 查看ORM内部SQL语句 神奇的双下划线查询 多表查询前提准备 常用字段 字段类型 AutoField in ...
- 哪里可以下载支付宝demo或者sdk
http://club.alipay.com/read-htm-tid-9976972.html 这里有所有的demo和sdk包括移动产品的demo.在他的论坛里面呢 真心恶心啊.不放到主页.
- zabbix之监控Nginx连接数
#;下载Nginx (编译的时候必须加上此选项 --with-http_stub_status_module) 官网地址:http://nginx.org/en/docs/http/ngx_http_ ...
- python web框架学习笔记
一.web框架本质 1.基于socket,自己处理请求 #!/usr/bin/env python3 #coding:utf8 import socket def handle_request(cli ...
- redis入门到精通系列(六):redis的事务详解
(一)事务的概念 谈到数据库的高级应用,不可避免会谈到事务.熟悉mysql的朋友们对事务肯定不陌生,简单来讲事务就是控制一个数据库操作序列要么全部执行要么全部不执行.今天我们就来了解redis中的事务 ...
- 常用 HTTP 状态码
下面是列举的我在项目中用到过的一些 HTTP 状态码,当然,在具体的使用中并不是用到的状态码越多越好,需要结合自己项目情况来选用适合自己的 HTTP 状态码. HTTP 状态码 含义说明 200 ...
- matplotlib 画图中图和次坐标轴
一: fig.add_axes 画图中图 fig = plt.figure() x = np.arange(1, 9, 1) y = np.linspace(1, 10, 8) left, botto ...
- C#获取Windows10屏幕的缩放比例
现在1920x1080以上分辨率的高分屏电脑渐渐普及了.我们会在Windows的显示设置里看到缩放比例的设置.在Windows桌面客户端的开发中,有时会想要精确计算窗口的面积或位置.然而在默认情况下, ...
- Netty 编解码奥秘
Netty中编解码 Netty 的解码器有很多种,比如基于长度的,基于分割符的,私有协议的.但是,总体的思路都是一致的. 拆包思路:当数据满足了 解码条件时,将其拆开.放到数组.然后发送到业务 han ...