Defending Adversarial Attacks by Correcting logits
概
作者认为, adversarial samples 和 natural samples的分布是不同, 结果二者的输出logits的分布也是不同的, 那么能否通过此来还原正确的类别呢?
主要内容
思路是这样子的, 假设原本的网络为\(f(\cdot)\), natural样本\(x\)和adversarial样本\(x'\)分别得到\(z\)和\(z'\), 根据假设(发现)二者的分布是不同的. 构建一个新的判别器\(g(\cdot)\), 将\(z\)和\(z'\)作为新的输入, 自然我们希望natrual样本的\(z\)的输出还是\(g(z)=z\), 而adversarial样本的\(z'\)被转换为\(g(z')=z\). 如果能够做到, 那么\(g(\cdot)\)就成为了一个防御手段.
实验发现, 这种想法是有效的, 且效率非常高, 甚至能够提高clean accuracy !
实验
论文没有开放代码, 个人的实验结果不是很理想, 当然可能和在小数据集上跑有关系. 另外论文没有说清楚adversarial samples是如何构造的. 因为如果是单纯通过原有的网络构造对抗样本再利用\(g(\cdot)\)恢复是不可靠的, 应该在\(g \circ f\)的基础上构造.
Defending Adversarial Attacks by Correcting logits的更多相关文章
- Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- Attacks for RL
1. http://rll.berkeley.edu/adversarial/ Adversarial Attacks on Neural Network Policies 就是对test时候的p ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Adversarial Examples Are Not Bugs, They Are Features
目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
随机推荐
- Netty之Channel*
Netty之Channel* 本文内容主要参考**<<Netty In Action>> ** 和Netty的文档和源码,偏笔记向. 先简略了解一下ChannelPipelin ...
- mysql报错max_connections错误
SELECT @@MAX_CONNECTIONS AS 'Max Connections';set GLOBAL max_connections=10000; show status like '%t ...
- mysql与clickhouse的字段类型对应表
- IDE搬进浏览器里——JetBrains Projector
发展 提起 JetBrains,你会想到什么?各路强大的 IDE,比如 Android Studio.IDEA.WebStorm--这些对于开发者来说耳熟能详的产品都出自这家公司,这些 IDE 的功能 ...
- sql优化的8种方式
1.设置索引. MySQL索引操作:给表列创建索引: 建表时创建索引: create table t(id int,name varchar(20),index idx_name (name)); 给 ...
- Linux 易错小结
修改文件夹(递归修改)权限 chmod -R 777 /html Linux查看进程的4种方法 第一种: ps aux ps命令用于报告当前系统的进程状态.可以搭配kill指令随时中断.删除不必要的程 ...
- Java学习1:图解Java内存分析详解(实例)
首先需要明白以下几点: 栈空间(stack),连续的存储空间,遵循后进先出的原则,用于存放局部变量. 堆空间(heap),不连续的空间,用于存放new出的对象,或者说是类的实例. 方法区(method ...
- Windows下mysql5.6升级到5.7的方法(亲测有效哦!)
Mysql的升级方式分为两种:原地升级和逻辑升级.这两种升级方式,本质没有什么区别的. 只是在对数据文件的处理上有些区别而已.原地升级是直接将数据文件进行拷贝,而逻辑升级对数据文件的处理方式是通过逻辑 ...
- 如何利用火焰图定位 Java 的 CPU 性能问题
常见 CPU 性能问题 你所负责的服务(下称:服务)是否遇到过以下现象: 休息的时候,手机突然收到大量告警短信,提示服务的 99.9 line 从 20ms 飙升至 10s: 正在敲代码实现业务功能 ...
- linux安装软件系列之yum安装
自动搜索最快镜像插件: yum install yum-fastestmirror 安装yum图形窗口插件: yum install yumex 1.安装 yum install 全部安装 yum i ...