Defending Adversarial Attacks by Correcting logits
概
作者认为, adversarial samples 和 natural samples的分布是不同, 结果二者的输出logits的分布也是不同的, 那么能否通过此来还原正确的类别呢?

主要内容

思路是这样子的, 假设原本的网络为\(f(\cdot)\), natural样本\(x\)和adversarial样本\(x'\)分别得到\(z\)和\(z'\), 根据假设(发现)二者的分布是不同的. 构建一个新的判别器\(g(\cdot)\), 将\(z\)和\(z'\)作为新的输入, 自然我们希望natrual样本的\(z\)的输出还是\(g(z)=z\), 而adversarial样本的\(z'\)被转换为\(g(z')=z\). 如果能够做到, 那么\(g(\cdot)\)就成为了一个防御手段.
实验发现, 这种想法是有效的, 且效率非常高, 甚至能够提高clean accuracy !
实验
论文没有开放代码, 个人的实验结果不是很理想, 当然可能和在小数据集上跑有关系. 另外论文没有说清楚adversarial samples是如何构造的. 因为如果是单纯通过原有的网络构造对抗样本再利用\(g(\cdot)\)恢复是不可靠的, 应该在\(g \circ f\)的基础上构造.
Defending Adversarial Attacks by Correcting logits的更多相关文章
- Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- Attacks for RL
1. http://rll.berkeley.edu/adversarial/ Adversarial Attacks on Neural Network Policies 就是对test时候的p ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Adversarial Examples Are Not Bugs, They Are Features
目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
随机推荐
- 18. MYSQL 字符编码配置
MYSQL 5.7版本的my.ini 在C盘隐藏文件夹下 C:\ProgramData\MySQL\MySQL Server 5.7 [client] default-character-set=ut ...
- flink02------1.自定义source 2. StreamingSink 3 Time 4窗口 5 watermark
1.自定义sink 在flink中,sink负责最终数据的输出.使用DataStream实例中的addSink方法,传入自定义的sink类 定义一个printSink(),使得其打印显示的是真正的ta ...
- Vue中加载百度地图
借助百度地图的 LocalSearch 和 Autocomplete 两个方法 实现方式:通过promise以及百度地图的callback回调函数 map.js 1 export function M ...
- LeetCode382-链表随机节点
原题链接:[382. 链表随机节点]:https://leetcode-cn.com/problems/linked-list-random-node/ 题目描述: 给定一个单链表,随机选择链表的一个 ...
- 求最长子序列(非连续)的STL方法 - 洛谷P1020 [NOIP1999 普及组] 导弹拦截
先给出例题:P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 大佬题解:P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 ...
- ehcache详解
Ehcache是现在最流行的纯Java开 源缓存框架,配置简单.结构清晰.功能强大,最初知道它,是从Hibernate的缓存开始的.网上中文的EhCache材料以简单介绍和配置方法居多, 如果你有这方 ...
- spring的不同事务传播行为和用途。
1.PROPAGATION_REQUIRED:如果当前没有事务,就创建一个事务,如果当前存在事务,就加入该事务,该设置是最常用的设置. 2.PROPAGATION_SUPPORTS:支持当前事务,如果 ...
- Taro 微信小程序 上传文件到minio
小程序前端上传文件不建议直接引用minio的js npm包,一来是这个包本身较大,会影响小程序的体积,二来是ak sk需要放到前端存储,不够安全,因此建议通过请求后端拿到签名数据后上传. 由于小程序的 ...
- 2021 中国.NET开发者峰会近50场热点技术专题揭秘
01 大会介绍 .NET Conf China 2021 是面向开发人员的社区峰会,基于 .NET Conf 2021的活动,庆祝 .NET 6 的发布和回顾过去一年来 .NET 在中国的发展成果展 ...
- MySQL数据库行转列
一.数据源如下所示 二.对应SQL语句如下所示 -- 行转列 SELECT t1.`产品名称`, SUM(CASE t1.`日期` WHEN '2019-11-11' THEN t1.`数量` ELS ...