Defending Adversarial Attacks by Correcting logits
概
作者认为, adversarial samples 和 natural samples的分布是不同, 结果二者的输出logits的分布也是不同的, 那么能否通过此来还原正确的类别呢?

主要内容

思路是这样子的, 假设原本的网络为\(f(\cdot)\), natural样本\(x\)和adversarial样本\(x'\)分别得到\(z\)和\(z'\), 根据假设(发现)二者的分布是不同的. 构建一个新的判别器\(g(\cdot)\), 将\(z\)和\(z'\)作为新的输入, 自然我们希望natrual样本的\(z\)的输出还是\(g(z)=z\), 而adversarial样本的\(z'\)被转换为\(g(z')=z\). 如果能够做到, 那么\(g(\cdot)\)就成为了一个防御手段.
实验发现, 这种想法是有效的, 且效率非常高, 甚至能够提高clean accuracy !
实验
论文没有开放代码, 个人的实验结果不是很理想, 当然可能和在小数据集上跑有关系. 另外论文没有说清楚adversarial samples是如何构造的. 因为如果是单纯通过原有的网络构造对抗样本再利用\(g(\cdot)\)恢复是不可靠的, 应该在\(g \circ f\)的基础上构造.
Defending Adversarial Attacks by Correcting logits的更多相关文章
- Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- Attacks for RL
1. http://rll.berkeley.edu/adversarial/ Adversarial Attacks on Neural Network Policies 就是对test时候的p ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Adversarial Examples Are Not Bugs, They Are Features
目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
随机推荐
- A Child's History of England.26
CHAPTER 9 ENGLAND UNDER WILLIAM THE SECOND, CALLED RUFUS William the Red, in breathless haste, secur ...
- ache
ache和pain可能没啥差别,头疼和头好痛都对.从词典来看,有backache, bellyache, earache, headache, heartache, moustache/mustach ...
- volatile原理和应用场景
volatile是java语言中的一个关键字,常用于并发编程,有两个重要的特点:具有可见性,java虚拟机实现会为其满足Happens before原则;不具备原子性.用法是修饰变量,如:volati ...
- 【2021赣网杯web(一)】gwb-web-easypop
源码分析 <?php error_reporting(0); highlight_file(__FILE__); $pwd=getcwd(); class func { public $mod1 ...
- Stream collect Collectors 常用详细实例
返回List集合: toList() 用于将元素累积到List集合中.它将创建一个新List集合(不会更改当前集合). List<Integer> integers = Arrays.as ...
- fastJson序列化
在pojo实体中有map<String,Object>的属性,有个key是user它存储在数据库中是用户的id数组,而在aop里会对这个属性做用户详细信息查询并重新put给user.在做J ...
- 数组实现堆栈——Java实现
1 package struct; 2 3 4 //接口 5 interface IArrayStack{ 6 //栈的容量 7 int length(); 8 //栈中元素个数(栈大小) 9 int ...
- 8.Vue.js-计算属性
计算属性关键词: computed. 计算属性在处理一些复杂逻辑时是很有用的. 可以看下以下反转字符串的例子: <!DOCTYPE html><html><head> ...
- 莫烦python教程学习笔记——learn_curve曲线用于过拟合问题
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 淘宝网购物车jquery源码和网易新用户注册页面表单验证的练习
淘宝网购物车源码: <html lang="en"> <head> <meta charset="UTF-8"> <t ...