做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下(

证明:


猜想:

\[\operatorname{SG}(i,j)=\begin{cases}\operatorname{lowbit}(i+j-1),i=1\lor j=1\\2^{i+j-2},otherwise\end{cases}
\]

我们要用到一个结论: 局面的 SG 值等于局面中所有反面朝上的硬币单独存在时的 SG 值的异或和 。然而这个结论我不太会证()。我们暂且使用它而不证明。

首先当 \(i=1\lor j=1\) 成立时,本题相当于一维放硬币问题,其 SG 函数等同于一维的 \(lowbit(i)\)。因为 \(i\) 或 \(j\) 中至少有一个是 1,于是我们只需要将横纵坐标相加再 \(-1\) 即可消去为 1 的那一维。

对于其他情况我们使用数学归纳法:

首先对于 \(\operatorname{SG}(2,2)\) ,有以下几种选择方案(下图中 \(0/1\) 代表反转后分别是正面/反面朝上):

\(\begin{matrix} 0&0\\0&0 \end{matrix} ,\operatorname{SG}=0\)

\(\begin{matrix} 0&1\\0&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(1,2)=2\)

\(\begin{matrix} 0&0\\1&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(2,1)=2\)

\(\begin{matrix} 0&1\\1&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(1,2)\space\operatorname{xor}\space \operatorname{SG}(2,1)=0\)

\(\begin{matrix} 1&1\\0&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(1,1)\space\operatorname{xor}\space \operatorname{SG}(1,2)=3\)

\(\begin{matrix} 1&0\\1&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(1,1)\space\operatorname{xor}\space \operatorname{SG}(2,1)=3\)

\(\begin{matrix} 1&1\\1&0 \end{matrix} ,\operatorname{SG}=\operatorname{SG}(1,1)\space\operatorname{xor}\space SG(1,2)\space\operatorname{xor}\space \operatorname{SG}(2,1)=1\)

\(\therefore \operatorname{SG}(2,2)=\operatorname{mex}\{0,2,2,0,3,3,1\}=4\),满足猜想。

还有一种特殊情况就是 \(i=2\land j>2\) 或 \(i>2\land j=2\),不难发现它们是等价的,因此这里我们只以 \(i=2\land j>2\) 为例。此时有 \(\operatorname{SG}(i,j-1)=2^{i+j-3},\operatorname{SG}(i-1,j)=\operatorname{lowbit}(j)\)。由 SG 函数定义有对于左上角为 \((1,1)\),右下角为 \((i,j-1)\) 的不包含右下角的矩形,在其中选择满足题目要求的连通块所得 SG 函数值域取遍 \([0,2^{i+j-3}-1]\)。因此在选择 \((i,j-1)\) 一点与上述矩形范围内取连通块可以取遍 \(2^{i+j-3}\space\operatorname{xor}\space[0,2^{i+j-3}-1]\) 即 \([2^{i+j-3},2^{i+j-2}-1]\) 范围内的值;可以证明在 \(j\ge3\) 时有 \(\operatorname{SG}(i-1,j)=\operatorname{lowbit}(j)\le 2^{i+j-4}\) (在 \(j=3\) 时有 \(\operatorname{lowbit}(3)=1\le 2^{i+j-4}\) ,而在 \(j>3\) 时有 \(\operatorname{lowbit}(j)\le j \le 2^{j-2}=2^{i+j-4}\)),因此在选择 \((i-1,j)\) 一点与上述矩形范围内取连通块可以取遍 \(\operatorname{lowbit}(j)\space\operatorname{xor}\space[0,2^{i+j-3}-1]\) 也即 \([0,2^{i+j-3}-1]\) 范围内的值(因为 \(\operatorname{lowbit}(j)\) 一位上为 1 的数异或后该位会变成 0,为 0 的数该位会变为 1,值域仍取遍)。做一下 mex 可得 \(\operatorname{SG}(i,j)=2^{i+j-2}\),符合猜想。

对于 \(i>2\land j>2\) 的 \((i,j)\),由数学归纳法有 \(\operatorname{SG}(i,j-1)=\operatorname{SG}(i-1,j)=2^{i+j-3}\),由 SG 函数定义有对于左上角为 \((1,1)\),右下角为 \((i,j-1)\) 的不包含右下角的矩形,在其中选择满足题目要求的连通块所得 SG 函数值域取遍 \([0,2^{i+j-3}-1]\)。因此除选择点 \((i,j)\)外,在 \((i,j-1),(i-1,j)\) 两点与上述矩形范围内取连通块可以取遍 \([0,2^{i+j-3}-1]\) 范围内的值,在 \((i,j-1)\) 一点与上述矩形范围内取连通块可以取遍 \(2^{i+j-3}\space\operatorname{xor}\space[0,2^{i+j-3}-1]\) 即 \([2^{i+j-3},2^{i+j-2}-1]\) 范围内的值,做一下 mex 可得 \(\operatorname{SG}(i,j)=2^{i+j-2}\),符合猜想。

证毕。

顺便挂一下代码:

#include <bits/stdc++.h>
using namespace std;
int T , n , m , sg[110][110] , init() , f[220] , flag;
string s;
inline void init()
{
for(int i = 1 ; i <= 100 ; i++ ) sg[i][1] = sg[1][i] = log2(i & (-i));
for(int i = 2 ; i <= 100 ; i++ )
for(int j = 2 ; j <= 100 ; j++ ) sg[i][j] = i + j - 2;
return ;
}
int main()
{
init();
scanf("%d" , &T);
while(T--)
{
memset(f , 0 , sizeof(f)); flag = 0;
scanf("%d%d" , &n , &m);
for(int i = 1 ; i <= n ; i++ )
{
cin >> s;
for(int j = 1 ; j <= m ; j++ )
{
if(s[j - 1] == 'T') f[sg[i][j]] ^= 1;
}
}
for(int i = 0 ; i <= 200 ; i++ )
{
if(f[i])
{
flag = 1;
break;
}
}
if(flag) printf("-_-\n");
else printf("=_=\n");
}
return 0;
}
/*
1
3 4
TTHH
THTH
TTHH
*/

luogu2594 [ZJOI2009]染色游戏的更多相关文章

  1. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  2. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  3. [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  4. BZOJ1434:[ZJOI2009]染色游戏(博弈论)

    Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...

  5. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  6. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. bzoj1411: [ZJOI2009]硬币游戏

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 965  Solved: 420[Submit][Status ...

  9. 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles

    E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...

随机推荐

  1. Django(41)详解异步任务框架Celery

    celery介绍   Celery是由Python开发.简单.灵活.可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务.Celery ...

  2. Django(43)restful接口规范

    restful接口规范   什么是接口规范?接口规范就是为了采用不同的后台语言,也能使用同样的接口获取到同样的数据.如何写接口:接口规范是规范化书写接口的,写接口要写url.响应数据 ​  注:如果将 ...

  3. Redis(二) 数据类型操作指令以及对应的RedisTemplate方法

    1.Redis key值操作以及RedisTemplate对应的API 本文默认使用RedisTemplate,关于RedisTemplate和StringRedisTemplate的区别如下 Red ...

  4. CPU性能PK

    CPU性能PK AMD vs Intel 2020: Who Makes the Best CPUs? 英文原文链接:https://www.tomshardware.com/features/amd ...

  5. 【NX二次开发】开发环境搭建

    1.Visual Studio 版本按照下表选择. UG版本 VS版本 NX1847-NX1872版 Visual Studio 2017 Build 19.10.25017 NX12版 Visual ...

  6. Pytorch CNN网络MNIST数字识别 [超详细记录] 学习笔记(三)

    目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 ...

  7. 懒人 IDEA 插件推荐:EasyCode 一键帮你生成所需代码

    Easycode是idea的一个插件,可以直接对数据的表生成entity,controller,service,dao,mapper,无需任何编码,简单而强大. 1.安装(EasyCode) 我这里的 ...

  8. C#WebService的创建与发布

    VS中新建项目-Web-ASP.NET Web应用程序 然后确定,选择空模版就可以了 其中CRMService.asmx是点击项目新建Web服务(asmx) 这样基本的功能就能用了,然后就是发布 点击 ...

  9. Spring学习日记01_IOC_xml的三种注入方式

    什么是IOC 控制反转,把对象创建和对象之间的调用过程,交给Spring进行管理 使用IOC目的:为了耦合度降低 做入门案例就是IOC实现 IOC底层原理 xml解析 工厂模式 反射 原始方式 cla ...

  10. 955.WLB 不加班公司名单!再新增 5 家公司!

    大家好!我是<Visual Studio Code 权威指南>的作者韩骏.相信不少童鞋都是因为 VS Code 认识到我:也许是用了我写的 20 多个 VS Code 插件(比如 Code ...