由于题目的证明可以发现$ans\ge 2m/n \ge n-1$,于是大胆猜测答案就是n-1
若n是奇数,则将边分为n组,每组(n-1)/2,如果同组内边没有交点,那么只需要每一组边一个权值区间,从每一组边一定不可能走回那组边(因为会经过其他组的边),所以答案至多n-1
若n是偶数,先对n-1的图边分类,最后可以发现每一组边都还剩下一个点,和n相连即可
具体分组方法:如果将n个点排成一条线,初始2-n,3-(n-1)……然后不断平移+循环即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,k,t,a[505][505];
4 int main(){
5 scanf("%d",&n);
6 k=n+(n&1)-1;
7 for(int i=0;i<k;i++){
8 if (n%2==0)a[i][n-1]=a[n-1][i]=++t;
9 for(int j=1,x=i,y=i;j<(n+1)/2;j++){
10 x=(x+1)%k;
11 y=(y-1+k)%k;
12 a[x][y]=a[y][x]=++t;
13 }
14 }
15 for(int i=0;i<n;i++){
16 for(int j=i+1;j<n;j++)printf("%d ",a[i][j]);
17 printf("\n");
18 }
19 return 0;
20 }

[bzoj5025]单调上升路径的更多相关文章

  1. UOJ#201. 【CTSC2016】单调上升路径 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 ...

  2. 「CTSC2016」单调上升路径

    「CTSC2016」单调上升路径 解题思路:根据提示可以得到答案的下界是 \(n - 1\) ,然后打表发现这个下界好像一定可以取到. 事实上考虑 \(n\) 个点完全图的边数是 \(\frac{n( ...

  3. [CTSC2016]单调上升路径

    题目:UOJ#201. 题目大意:给定n个点(n是偶数)的完全图,现在要你给每条边确定一个权值(互不相等),使得最长的单调上升路径最短.现在要你输出边的权值. 一条路径被称为单调上升的,如果沿着它走时 ...

  4. 【UOJ #201】【CTSC 2016】单调上升路径

    http://uoj.ac/problem/201 别人都一眼秒的题对我而言怎么那么难qwq 这道题就是要构造一个n*n的邻接矩阵,满足矩阵\(A\)是一个拉丁方阵(也是数独?),\(a_{ij}=a ...

  5. Phpcms整理

    一.先去官网下载一个pc(http://www.phpcms.cn/)进行安装 把下载的pc包放在服务器www目录下: 在地址栏访问localhost/project/install/install. ...

  6. 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

    [题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...

  7. 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)

    Walking Race   Description flymouse's sister wc is very capable at sports and her favorite event is ...

  8. 【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP

    2892: 强袭作战 Time Limit: 50 Sec  Memory Limit: 512 MBSubmit: 45  Solved: 30[Submit][Status][Discuss] D ...

  9. poj3415 Common Substrings(后缀数组,单调栈 | 后缀自动机)

    [题目链接] http://poj.org/problem?id=3415 [题意] A与B长度至少为k的公共子串个数. [思路] 基本思想是将AB各个后缀的lcp-k+1的值求和.首先将两个字符串拼 ...

随机推荐

  1. LightningChart XY功能中的常见问题

    LightningChart XY功能中的常见问题 XY 是LightningChart 的重要功能之一,也是被用户使用最广泛的.用户经常对这个功能有着这样那样的疑问,现在将一些常用问题汇总了一下,希 ...

  2. 题解 CF1172E Nauuo and ODT

    题目传送门 题目大意 给出一个 \(n\) 个点的树,每个点有颜色,定义 \(\text{dis}(u,v)\) 为两个点之间不同颜色个数,有 \(m\) 次修改,每次将某个点的颜色进行更改,在每次操 ...

  3. flask操作(增删改查操作)

    增加数据 from .models import Goods from app.extensions import db goods1 = Goods(name='魅族18s', price=3400 ...

  4. 【Java虚拟机7】ClassLoader源码文档翻译

    前言 学习JVM类加载器,ClassLoader这个类加载器的核心类是必须要重视的. Notes:下方蓝色文字是自己的翻译(如果有问题请指正).黑色文字是源文档.红色文字是自己的备注. ClassLo ...

  5. 【UE4 C++】碰撞检测与事件绑定

    概念 碰撞对象通道与预设 默认提供碰撞对象类型,如 WorldStatic.WorldDynamic等.允许用户自定义 默认提供碰撞预设,如 NoCollision.BloackAll.Overlap ...

  6. [软工顶级理解组] Beta阶段项目展示

    目录 团队成员 软件介绍 项目简介 预期典型用户 功能描述 预期目标用户数 用户反馈 团队管理 分工协作 项目管理 取舍平衡 代码管理 程序测试 代码规范 文档撰写 继续开发指导性 用户沟通 需求分析 ...

  7. redis中lua脚本的简单使用

    一.背景 在使用redis的过程中,发现有些时候需要原子性去操作redis命令,而redis的lua脚本正好可以实现这一功能.比如: 扣减库存操作.限流操作等等. redis的pipelining虽然 ...

  8. IDEA插件开发,我是如何把公司的发布系统搬到IDEA里的

    不得不说JetBrains公司直的非常的牛B,每一个程序员都能在JetBrains的官方网站找到一款属于自己的开发工具.这些开发工具在工作中给我们带来了巨大的便利.各种各样的基础插件,第三方插件,真是 ...

  9. yum history使用详解(某次为解决误卸载软件的回退实验)

    [root@localhost ~]# yum history list #查看历史 Loaded plugins: fastestmirror ID | Command line | Date an ...

  10. POJ 2584 T-Shirt Gumbo(二分图最大匹配)

    题意: 有五种衣服尺码:S,M,L,X,T N个人,每个人都有一个可以穿的衣服尺码的范围,例:SX,意思是可以穿S,M,L,X的衣服. 给出五种尺码的衣服各有多少件. 如果可以满足所有人的要求,输出 ...