由于题目的证明可以发现$ans\ge 2m/n \ge n-1$,于是大胆猜测答案就是n-1
若n是奇数,则将边分为n组,每组(n-1)/2,如果同组内边没有交点,那么只需要每一组边一个权值区间,从每一组边一定不可能走回那组边(因为会经过其他组的边),所以答案至多n-1
若n是偶数,先对n-1的图边分类,最后可以发现每一组边都还剩下一个点,和n相连即可
具体分组方法:如果将n个点排成一条线,初始2-n,3-(n-1)……然后不断平移+循环即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,k,t,a[505][505];
4 int main(){
5 scanf("%d",&n);
6 k=n+(n&1)-1;
7 for(int i=0;i<k;i++){
8 if (n%2==0)a[i][n-1]=a[n-1][i]=++t;
9 for(int j=1,x=i,y=i;j<(n+1)/2;j++){
10 x=(x+1)%k;
11 y=(y-1+k)%k;
12 a[x][y]=a[y][x]=++t;
13 }
14 }
15 for(int i=0;i<n;i++){
16 for(int j=i+1;j<n;j++)printf("%d ",a[i][j]);
17 printf("\n");
18 }
19 return 0;
20 }

[bzoj5025]单调上升路径的更多相关文章

  1. UOJ#201. 【CTSC2016】单调上升路径 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 ...

  2. 「CTSC2016」单调上升路径

    「CTSC2016」单调上升路径 解题思路:根据提示可以得到答案的下界是 \(n - 1\) ,然后打表发现这个下界好像一定可以取到. 事实上考虑 \(n\) 个点完全图的边数是 \(\frac{n( ...

  3. [CTSC2016]单调上升路径

    题目:UOJ#201. 题目大意:给定n个点(n是偶数)的完全图,现在要你给每条边确定一个权值(互不相等),使得最长的单调上升路径最短.现在要你输出边的权值. 一条路径被称为单调上升的,如果沿着它走时 ...

  4. 【UOJ #201】【CTSC 2016】单调上升路径

    http://uoj.ac/problem/201 别人都一眼秒的题对我而言怎么那么难qwq 这道题就是要构造一个n*n的邻接矩阵,满足矩阵\(A\)是一个拉丁方阵(也是数独?),\(a_{ij}=a ...

  5. Phpcms整理

    一.先去官网下载一个pc(http://www.phpcms.cn/)进行安装 把下载的pc包放在服务器www目录下: 在地址栏访问localhost/project/install/install. ...

  6. 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

    [题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...

  7. 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)

    Walking Race   Description flymouse's sister wc is very capable at sports and her favorite event is ...

  8. 【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP

    2892: 强袭作战 Time Limit: 50 Sec  Memory Limit: 512 MBSubmit: 45  Solved: 30[Submit][Status][Discuss] D ...

  9. poj3415 Common Substrings(后缀数组,单调栈 | 后缀自动机)

    [题目链接] http://poj.org/problem?id=3415 [题意] A与B长度至少为k的公共子串个数. [思路] 基本思想是将AB各个后缀的lcp-k+1的值求和.首先将两个字符串拼 ...

随机推荐

  1. HDC 2021 | HMS Core 6.0:连接与通信论坛,为App打造全场景连接体验

    如何在弱网环境下让用户享受无中断沉浸体验? 如何在全场景互联中让多设备交互如丝般顺滑? 如何在无网区域让移动终端发出紧急求助信息? 连接无处不在,连接与体验息息相关!流畅的网络体验已成为应用开发的关键 ...

  2. bzoj2242,洛谷2485----SDOI2011计算器(exgcd,qsm,bsgs模板)

    就是一道模板题! 这里再强调一下 BSGS 考虑方程\(a^x = b \pmod p\) 已知a,b,p\((2 \le p\le 10^9)\),其中p为质数,求x的最小正整数解 解法: 注意到如 ...

  3. bzoj2038 小z的袜子 (莫队)

    题目大意 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编 ...

  4. Apache Dubbo理解和应用

    官网:https://dubbo.apache.org/ slogan:高性能.轻量级的开源Java RPC框架 提供了六大核心能力:面向接口代理的高性能RPC调用,智能容错和负载均衡,服务自动注册和 ...

  5. Java(27)集合二List

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228435.html 博客主页:https://www.cnblogs.com/testero ...

  6. NOIP模拟80

    学考+OJ改名祭 T1 邻面合并 解题思路 状压 DP ...(于是贪心竟然有 60pts 的高分?? code) 状态设计的就非常妙了,如果状态是 1 就表示是一个分割点也就是一个矩形的右边界. 那 ...

  7. 【数据结构】c语言实现集合的交并差运算

    待改写:存储数据类型int-->char 重复的元素可存储 功能上不完善 #include <stdio.h> #include <stdlib.h> typedef s ...

  8. 【Spring】IoC容器 - Spring Bean作用域Scope(含SpringCloud中的RefreshScope )

    前言 上一章学习了[依赖来源],本章主要讨论SpringBean的作用域,我们这里讨论的Bean的作用域,很大程度都是默认只讨论依赖来源为[Spring BeanDefinition]的作用域,因为在 ...

  9. 分布式表示(Distributed Representation)

    NLP模型笔记 - 分布式表示 ziuno 2020-03-08 19:52:50 410 收藏 2 分类专栏: NLP 模型 笔记 文章标签: nlp 最后发布:2020-03-08 19:52:5 ...

  10. eureka服务端的高可用

    eureka client的高可用这个很简单,只需要向eureka服务端上多注册几个实例即可,那么eureka server端如何实现高可用呢?其实eureka server 端也是可以做为一个客户端 ...