【九度OJ】题目1207:质因数的个数 解题报告
【九度OJ】题目1207:质因数的个数 解题报告
标签(空格分隔): 九度OJ
原题地址:http://ac.jobdu.com/problem.php?pid=1207
题目描述:
求正整数N(N>1)的质因数的个数。
相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。
输入:
可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。
输出:
对于每组数据,输出N的质因数的个数。
样例输入:
120
样例输出:
5
提示:
注意:1不是N的质因数;若N为质数,N是N的质因数。
Ways
这个题同样采用素数筛法,首先求得1-1000000之间的所有素数放到prime中,然后依次进行除法测试,看能不能整除,如果能整除则一直整除下去,并且记录除了多少次。
注意,为什么输入数字的范围是10^9,但是存储素数时只保存了100000个呢?是因为sqrt(n)的复杂度原因。也就是说这个范围内的整数所包含的最大素数因子在10^5-10^9之间最多只有一个。因此,遍历1-10^5之间的素数,如果剩余的n不是1,说明含有大于10^5的素数因子,但这个因子只有1个。
#include <stdio.h>
int prime[1000001];//2,3,5,7...
int flag[1000001];
int size;
void init() {
size = 0;
for (int i = 1; i <= 1000000; i++) {
flag[i] = false;
}
for (int i = 2; i <= 1000000; i++) {
if (flag[i]) {
continue;
}
prime[size++] = i;
if (i >= 10000) continue;
for (int j = i * i; j <= 1000000; j += i) {
flag[j] = true;
}
}
}
int main() {
init();
int n;
while (scanf("%d", &n) != EOF) {
int count = 0;
for (int i = 0; i < size && n != 1; i++) {//注意两个循环条件,
while (n % prime[i] == 0) {//遍历所有素数
n /= prime[i];//如果能整除,就一直整除到不能再整除
count++;//每整除一次,count++
}
}
if (n != 1) {//包含大于10^5的因子,案分析最多只有一个这样的因子
count++;
}
printf("%d\n", count);
}
return 0;
}
没错!又可以用BigInteger类!下面这个方法我测试的时候感觉是对的,可是在OJ上运行的时候,LTE,超时。说明nextProbablePrime()的确很耗时间,在OJ上很不占优势。
import java.util.*;
import java.math.*;
public class Main{
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
BigInteger n = scanner.nextBigInteger();
BigInteger x = new BigInteger("2");
int count = 0;
while (x.intValue() < 100000 && n.intValue() != 1) {
while (n.remainder(x).intValue() == 0) {//不小心写成了if
n = n.divide(x);
count++;
}
x = x.nextProbablePrime();
}
if (n.intValue() != 1) {
count++;
}
System.out.println(count);
}
}
}
Date
2017 年 3 月 7 日
【九度OJ】题目1207:质因数的个数 解题报告的更多相关文章
- 九度oj题目1207:质因数的个数
题目描述: 求正整数N(N>1)的质因数的个数. 相同的质因数需要重复计算.如120=2*2*2*3*5,共有5个质因数. 输入: 可能有多组测试数据,每组测试数据的输入是一个正整数N,(1&l ...
- 九度oj 题目1207:质因数的个数
题目描述: 求正整数N(N>1)的质因数的个数. 相同的质因数需要重复计算.如120=2*2*2*3*5,共有5个质因数. 输入: 可能有多组测试数据,每组测试数据的输入是一个正整数N,(1&l ...
- 九度oj题目&吉大考研11年机试题全解
九度oj题目(吉大考研11年机试题全解) 吉大考研机试2011年题目: 题目一(jobdu1105:字符串的反码). http://ac.jobdu.com/problem.php?pid=11 ...
- 九度OJ 题目1384:二维数组中的查找
/********************************* * 日期:2013-10-11 * 作者:SJF0115 * 题号: 九度OJ 题目1384:二维数组中的查找 * 来源:http ...
- hdu 1284 关于钱币兑换的一系列问题 九度oj 题目1408:吃豆机器人
钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- 九度oj 题目1007:奥运排序问题
九度oj 题目1007:奥运排序问题 恢复 题目描述: 按要求,给国家进行排名. 输入: 有多组数据. 第一行给出国家数N,要求排名的国家数M,国家号 ...
- 九度oj 题目1087:约数的个数
题目链接:http://ac.jobdu.com/problem.php?pid=1087 题目描述: 输入n个整数,依次输出每个数的约数的个数 输入: 输入的第一行为N,即数组的个数(N<=1 ...
- 九度OJ 1371 最小的K个数 -- 堆排序
题目地址:http://ac.jobdu.com/problem.php?pid=1371 题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4 ...
- 九度OJ题目1105:字符串的反码
tips:scanf,cin输入字符串遇到空格就停止,所以想输入一行字符并保留最后的"\0"还是用gets()函数比较好,九度OJ真操蛋,true?没有这个关键字,还是用1吧,还是 ...
随机推荐
- [R] 如何绘制各样本的pathway丰度热图?
前言 一般而言,我们做完pathway富集分析,就做下气泡图或bar图来进行展示,但它们实际上只考虑了富集因子和Pvalue.如果我们不关注这两个因素,而是在乎样本本身的pathway丰度呢? 对于K ...
- R语言与医学统计图形-【34】绘制统计表格
表的绘制,主要是临床三线表. 1.tableone包 #install.packages('tableone') library(tableone) set.seed(2017) age <- ...
- 完美png图片添加水印类
完美png图片添加水印类 被添加水印图片和水印图片都可以是png,保证透明无色背景,可调节透明度 <?phpclass Imgshuiyin{ /* 缩略图相关常量定义 */ const THU ...
- Kubernetes-存储(一)
前言 本篇是Kubernetes第十二篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kubern ...
- HTML5 之 FileReader 的使用 (网页上图片拖拽并且预显示可在这里学到) [转载]
转载至 : http://www.360doc.com/content/14/0214/18/1457948_352511416.shtml FileReader 资料(英文) : https://d ...
- Linux学习 - 文件包处理命令
一.搜索文件find find [搜索范围] [匹配条件] (1) -name(名字查找) <1> find /etc -name init 查找/etc下以 "in ...
- Mockito 简介
Mockito 是一种 Java Mock 框架,主要是用来做 Mock 测试,它可以模拟任何 Spring 管理的 Bean.模拟方法的返回值.模拟抛出异常等等,在了解 Mockito 的具体用法之 ...
- new Date()与setDate()参数
New Date()与setDate()参数 相信网上已经有很多关于日期的文章了,这里只是我自己再工作中遇到的问题然后加以总结: new Date() new Date() 一共有六种形式,五种带参数 ...
- 【Matlab】向图像域添加噪声/高斯/均匀/伽马/指数/椒盐
[向图像域添加噪声] matlab自带一个函数:imnoise,可以对图像添加噪声. Matlab的说明 https://www.mathworks.com/help/images/ref/imnoi ...
- 【C/C++】例题3-5 生成元/算法竞赛入门经典/数组与字符串
[题目] x+x的各位数之和为y,x为y的生成元. 求10万以内的n的最小生成元,无解输出0. [解答] 这是我根据自己的想法最初写的代码: #include<cstdio> #inclu ...