写在前面

为什么要写?因为自己学不明白希望日后能掌握。

大体思路大概是

  1. 设计一个容斥的方案,并使其贡献可以便于计算。
  2. 得出 dp 状态,然后优化以得出答案。

下列所有类似 \([l,r]\) 这样的都是离散的。

1.

\(n\) 个点,每个点有一个能选择的颜色 \(a_i\),左右相邻的点不能同色,求方案数。

如果我们使用容斥的思想,强制 \(k\) 段的颜色相同,这个限制下的方案数对答案的贡献的容斥系数就是 \((-1)^{n-k}\)。这应该是相邻颜色不同的方案数的一个非常平凡的trick。(但是我不会

可以设 \(f_i\) 表示统计到前 \(i\) 个点所容斥的答案和。枚举 \([j,i]\) 这一段强制颜色相等。

\[f_i=-\sum\limits_{j=1}^i f_{j-1}\min\limits_{j\le k\le i}a_i
\]

这个东西可以用单调栈维护一下。

注意到这个东西可以拓展到环上。把 \(a_i\) 最小的位置轮换到最前面,然后你发现 \(f_i\) 其实就是强制了 \([i+1,n]\) 和 \(1\) 的颜色相同的答案。全部加起来就好了。

    s[0] = f[0] = 1; int top = 0;
ll sum = 0;
fo(i, 1, c) {
while(top && b[stc[top]] > b[i])
sum = (sum + (ll)(s[stc[top] - 1] - (stc[top] == 1 ? 0 :
s[stc[top - 1] - 1]) + mod) * (b[i] - b[stc[top]] + mod)) % mod,
--top;
stc[++top] = i;
sum = (sum + (ll)f[i - 1] * b[i]) % mod;
f[i] = mod - sum;
s[i] = (f[i] + s[i - 1]) % mod;
}

2.

\(n\) 个点,一个区间可以覆盖 \([l_i,r_i]\) 这一段,每个区间有一个价值 \(v_i\) ,定义一种“覆盖”为每个点至少被一个区间所覆盖的方案,其价值为所有所选区间的价值积,求所有覆盖的价值之和。

考虑强制 \(k\) 个点不被覆盖,那么这种情况对答案的贡献的容斥系数就是 \((-1)^k\)。其贡献就是这些点之间的区间的乘积之和。

这样的话,设 \(f_i\) 表示 \(i\) 点被钦定,枚举 \(j\) 表示上一个钦定点,有

\[f_i=-\sum_{j=1}^{i-1}f_j \prod_{j<l_k\le r_k<i}(v_k+1)
\]

这玩意可以线段树优化!考虑线段树的每一个位置记录的是它作为 \(j\) 造成的贡献,假设现在新加入一个区间 \(k\) ,它能使 \([0,l_k)\) 的位置的贡献发生变化,乘上 \((1+v_k)\)。

#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#define ll long long
#define fo(i, a, b) for(int i = (a); i <= (b); ++i)
#define fd(i, a, b) for(int i = (a); i >= (b); --i)
using namespace std;
inline void read(int &x) {
x = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
}
const int N = 2e5 + 10, mod = 1e9 + 7;
namespace Seg {
#define ls t << 1
#define rs ls | 1
#define mid ((l + r) >> 1)
int tr[N << 2], pro[N << 2];
inline void mul(int t, int v) {tr[t] = (ll)tr[t] * v % mod, pro[t] = (ll)pro[t] * v % mod;}
inline void push_down(int t) {
if(pro[t] > 1) {
mul(ls, pro[t]), mul(rs, pro[t]);
pro[t] = 1;
}
}
void build(int t, int l, int r) {
pro[t] = 1;
if(l == r) return;
build(ls, l, mid), build(rs, mid + 1, r);
}
void change(int t, int l, int r, int w, int v) {
tr[t] = (tr[t] + v) % mod;
if(l == r) return ;
push_down(t);
w <= mid ? change(ls, l, mid, w, v) : change(rs, mid + 1, r, w, v);
}
void update(int t, int l, int r, int fl, int fr, int v) {
if(fl <= l && r <= fr) return mul(t, v);
push_down(t);
fl <= mid && (update(ls, l, mid, fl, fr, v), 1);
fr > mid && (update(rs, mid + 1, r, fl, fr, v), 1);
tr[t] = (tr[ls] + tr[rs]) % mod;
}
int query(int t, int l, int r, int fl, int fr) {
if(fl <= l && r <= fr) return tr[t];
push_down(t);
int ret = 0;
fl <= mid && (ret = (ret + query(ls, l, mid, fl, fr)) % mod);
fr > mid && (ret = (ret + query(rs, mid + 1, r, fl, fr)) % mod);
return ret;
}
}
struct Op {
int l, r, v;
}p[N];
vector<int> q[N];
int n, m, f[N];
int main() {
freopen("gugugu.in", "r", stdin);
freopen("gugugu.out", "w", stdout);
read(n), read(m);
fo(i, 1, m) read(p[i].l), read(p[i].r), read(p[i].v), q[p[i].r].push_back(i);
Seg::build(1, 0, n);
Seg::change(1, 0, n, 0, 1);
fo(i, 1, n + 1) {
Seg::change(1, 0, n, i, f[i] = mod - Seg::query(1, 0, n, 0, i - 1));
for(auto k : q[i])
Seg::update(1, 0, n, 0, p[k].l - 1, (p[k].v + 1) % mod);
}
printf("%d\n", mod - f[n + 1]);
return 0;
}

To be continued..

关于一类容斥原理设计 dp 状态的探讨的更多相关文章

  1. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  2. [提升性选讲] 树形DP进阶:一类非线性的树形DP问题(例题 BZOJ4403 BZOJ3167)

    转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7337179.html 树形DP是一种在树上进行的DP相对比较难的DP题型.由于状态的定义多种多样,因此解法也五 ...

  3. dp状态压缩

    dp状态压缩 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的就是那种状态很多,不容易用一般的方法表示的动态规划问题,这个就更加的难于把握了.难点在于以下几个方面:状 ...

  4. HDU 1074 Doing Homework (dp+状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...

  5. hdu_4352_XHXJ's LIS(数位DP+状态压缩)

    题目连接:hdu_4352_XHXJ's LIS 题意:这题花大篇篇幅来介绍电子科大的一个传奇学姐,最后几句话才是题意,这题意思就是给你一个LL范围内的区间,问你在这个区间内最长递增子序列长度恰为K的 ...

  6. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. HDU 1074 Doing Homework(DP状态压缩)

    题意:有n门功课需要完成,每一门功课都有时间期限以及你完成所需要的时间,如果完成的时间超出时间期限多少单位,就会被减多少学分,问以怎样的功课完成顺序,会使减掉的学分最少,有多个解时,输出功课名字典序最 ...

  8. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  9. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

随机推荐

  1. Linux学习 - 系统命令sudo权限

    1 功能 root把超级用执行的命令赋予普通用户执行 2 使用 visudo 或 vim /etc/sudoers 说明: root 用户名 ALL=(ALL) 被管理主机的地址=(可使用的身份) A ...

  2. html块 布局

    可通过<div>和<span>将html元素组合起来. Html块元素 大多数html元素被定义为块级元素或内联元素. 块级元素在浏览器显示时,通常会以新行来开始(和结束).例 ...

  3. 【Linux】【Commands】文件管理工具

    文件管理工具:cp, mv, rm cp命令:copy 源文件:目标文件 单源复制:cp [OPTION]... [-T] SOURCE DEST 多源复制:cp [OPTION]... SOURCE ...

  4. Linux上用Jexus部署Asp.Net网站:常规部署与Docker部署

    (一)常规部署 一.把 jexus压缩包下载到linux临时文件夹中. cd /tmp wget linuxdot.net/down/jexus-6.2.x-arm64.tar.gz (不同的操作系统 ...

  5. 【Java 多线程】Java线程池类ThreadPoolExecutor、ScheduledThreadPoolExecutor及Executors工厂类

    Java中的线程池类有两个,分别是:ThreadPoolExecutor和ScheduledThreadPoolExecutor,这两个类都继承自ExecutorService.利用这两个类,可以创建 ...

  6. html如何让input number类型的标签不产生上下加减的按钮(转)

    添加css代码: <style> input::-webkit-outer-spin-button, input::-webkit-inner-spin-button { -webkit- ...

  7. I/O流之字节流

    在程序中所有的数据都是以流的形式进行传输或保存的,程序需要数据时要使用输入流读取数据,而当程序需要将一些数据保存起来时,就要使用输出流完成对于操作文件内容,要进行文件内容的操作就需要通过Java提供的 ...

  8. 图形学之Unity渲染管线流程

    Unity中的渲染管线流程 下图是<Unity Shader 入门精要>一书中的渲染流程图: ApplicationStage阶段:准备场景信息(视景体,摄像机参数).粗粒度剔除.定义每个 ...

  9. Jenkins动态选择分支/tag

    目录 一.简介 二.配置 三.配置tag 四.其它方法 五.List Git Branches插件 一.简介 一般选择分支构建,Git Parameter插件即可.这里是应用pipline的同时,可以 ...

  10. hbuilder打包app基本流程

    声明:本文可能用到一些工具和第三方网站,都是为了达到目的而使用的工具,绝不含有广告成分 1.下载.最新的Hbuilder X貌似不能直接创建移动app了(自己不会用),建议旧版.可去腾某讯软件中心下载 ...