Portal

Yet another 1e9+7

Yet another 计数 dp

Yet another 我做不出来的题

考虑合法的按键方式长啥样。假设我们依次按下了 \(p_1,p_2,\dots,p_m\) 号按键。

若 \(m=1\),则序列 \(p_1,p_2,\dots,p_m\) 显然合法。

若 \(m>1\),则 \(p_1,p_2,\dots,p_m\) 必须有唯一最大值 \(x\)(否则的话第二次按 \(x\) 的时候就不合法了)。假设 \(x\) 将原序列分成两个子序列 \(p_1,p_2,\dots,p_{k-1}\) 和 \(p_{k+1},p_{k+2},\dots,p_{m}\),那么这两个序列的最大值必须都小于 \(x\),否则原序列就不会有唯一最大值 \(x\) 了。并且 \(p_1,p_2,\dots,p_{k-1}\) 和 \(p_{k+1},p_{k+2},\dots,p_{m}\) 也必须是合法序列。

形式化地说,\(p_1,p_2,\dots,p_m\) 必须是一个大根堆的中序遍历。

这样就可以 \(dp\) 了。设 \(dp_{a,b,c,x1,x2}\) 表示起点为 \(a\),终点为 \(b\),按下的按键的编号都 \(\leq c\) 的合法的行走路线个数。\(x1\) 表示是否对第一次的按键有要求,\(x2\) 表示是否对最后一次的按键有要求。

先考虑 \(x1=x2=0\) 的情况,即对起点和终点按键都没有要求。

那么有以下两种转移方式:

  • 按键序列中按下的编号最大的按键 \(<c\),则 \(dp_{a,b,c,0,0}=dp_{a,b,c-1,0,0}\)
  • 若按键序列中按下的编号最大的按键 \(=c\),那么我们枚举在 \(k\) 点按下编号为 \(c\) 的键,那么 \(a\) 到 \(b\) 的路径被我们拆成了两部分 \(a\to k\) 和 \(k\to b\)。我们进一步枚举 \(k\) 之前到达的点 \(u\) 和 \(k\) 接下来到达的点 \(v\),那么根据之前的推论,\(a\to u\) 路径上我们只能按下编号 \(\leq c-1\) 的键,\(v\to b\) 的路径上我们也只能按下编号 \(\leq c-1\) 的键。故我们有 \(dp_{a,b,c,0,0}=\sum\limits_{k}\sum\limits_{(u,k)}\sum\limits_{(k,v)}dp_{a,u,c-1,0,0}\times dp_{v,b,c-1,0,0}\),记 \(f_{a,k,c}=\sum\limits_{(u,k)}dp_{a,u,c-1,0,0}\), \(g_{b,k,c}=\sum\limits_{(k,v)}dp_{v,b,c-1,0,0}\),那么上述式子可优化为 \(dp_{a,b,c,0,0}=\sum\limits_{k}f_{a,k,c}\times g_{b,k,c}\)(当然,如果 \(k=a\) 那么 \(k\) 可以是路径当中第一个点,此时就不存在 \(k\) 之前的点了,故令所有 \(f_{a,a,c}\) 加 \(1\) 即可,\(g_{b,b,c}\) 同理)。

紧接着是 \(x1\neq 0\) 或 \(x2\neq 0\) 的情况,这里以 \(x1=1,x2=0\) 的情况为例,其它两种情况同理。

还是分两种情况(其实与之前那种情况大差不差):

  • 按键序列中按下的编号最大的按键 \(<c\),则 \(dp_{a,b,c,1,0}=dp_{a,b,c-1,1,0}\)。
  • 若按键序列中按下的编号最大的按键 \(=c\), \(dp_{a,b,c,1,0}=\sum\limits_{k}\sum\limits_{(u,k)}\sum\limits_{(k,v)}dp_{a,u,c-1,1,0}\times dp_{v,b,c-1,0,0}\),你还是记 \(f_{a,k,c}=\sum\limits_{(u,k)}dp_{a,u,c-1,1,0}\), \(g_{b,k,c}=\sum\limits_{(k,v)}dp_{v,b,c-1,0,0}\),将上述式子优化为 \(dp_{a,b,c,1,0}=\sum\limits_{k}f_{a,k,c}\times g_{b,k,c}\)(只不过 \(k=a\) 的情况要改一下,只有当 \(c=bs\) 的时候才能令 \(f_{a,a,c}\) 加 \(1\))

这样 \(dp\) 一遍是 \(n^4\) 的,加上 \(q\) 次询问的条件,显然不能让我们满意。

不过发现对于每组询问,只有当 \(a=s\) 的时候 \(dp_{a,b,c,1,0}\) 才有意义,只有当 \(b=t\) 的时候 \(dp_{a,b,c,0,1}\) 才有意义。所以可以预处理出 \(dp_{a,b,c,0,0}\) 的值,对于每组询问重新计算 \(dp_{a,b,c,0,1},dp_{a,b,c,1,0},dp_{a,b,c,1,1}\) 的值。这样总复杂度就降到了 \(n^4+qn^3\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=1;
while(!isdigit(c)){if(c=='-') neg=-1;c=getchar();}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
x*=neg;
}
const int MAXN=60;
const int MOD=1e9+7;
int n,k,qu;
char ed[MAXN+5][MAXN+5];
int dp[2][2][MAXN+5][MAXN+5][MAXN+5],f[2][MAXN+5][MAXN+5][MAXN+5],g[2][MAXN+5][MAXN+5][MAXN+5];
void prework(){
for(int x=1;x<=k;x++){
for(int i=1;i<=n;i++) for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[l][k]=='1') f[0][i][k][x]=(f[0][i][k][x]+dp[0][0][i][l][x-1])%MOD;
for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[k][l]=='1') g[0][j][k][x]=(g[0][j][k][x]+dp[0][0][l][j][x-1])%MOD;
for(int i=1;i<=n;i++) f[0][i][i][x]=(f[0][i][i][x]+1)%MOD;
for(int i=1;i<=n;i++) g[0][i][i][x]=(g[0][i][i][x]+1)%MOD;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dp[0][0][i][j][x]=dp[0][0][i][j][x-1];
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++)
dp[0][0][i][j][x]=(dp[0][0][i][j][x]+1ll*f[0][i][k][x]*g[0][j][k][x]%MOD)%MOD;
}
}
int query(int s,int bs,int t,int bt){
fill0(dp[1][0]);fill0(dp[0][1]);fill0(dp[1][1]);fill0(f[1]);fill0(g[1]);
for(int x=1;x<=k;x++){
for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[l][k]=='1') f[1][s][k][x]=(f[1][s][k][x]+dp[1][0][s][l][x-1])%MOD;
for(int k=1;k<=n;k++) for(int l=1;l<=n;l++)
if(ed[k][l]=='1') g[1][t][k][x]=(g[1][t][k][x]+dp[0][1][l][t][x-1])%MOD;
if(x==bs) f[1][s][s][x]=(f[1][s][s][x]+1)%MOD;
if(x==bt) g[1][t][t][x]=(g[1][t][t][x]+1)%MOD;
for(int i=1;i<=n;i++){
dp[1][0][s][i][x]=dp[1][0][s][i][x-1];
dp[0][1][i][t][x]=dp[0][1][i][t][x-1];
for(int k=1;k<=n;k++){
dp[1][0][s][i][x]=(dp[1][0][s][i][x]+1ll*f[1][s][k][x]*g[0][i][k][x]%MOD)%MOD;
dp[0][1][i][t][x]=(dp[0][1][i][t][x]+1ll*f[0][i][k][x]*g[1][t][k][x]%MOD)%MOD;
}
}
dp[1][1][s][t][x]=dp[1][1][s][t][x-1];
for(int k=1;k<=n;k++){
dp[1][1][s][t][x]=(dp[1][1][s][t][x]+1ll*f[1][s][k][x]*g[1][t][k][x]%MOD)%MOD;
}
}
return dp[1][1][s][t][k];
}
int main(){
scanf("%d%d%d",&n,&k,&qu);
for(int i=1;i<=n;i++) scanf("%s",ed[i]+1);
prework();
while(qu--){
int s,bs,t,bt;scanf("%d%d%d%d",&bs,&s,&bt,&t);
printf("%d\n",query(s,bs,t,bt));
}
return 0;
}
/*
6 3 8
010000
001000
000100
000010
000000
000001
1 1 1 1
3 3 1 1
1 1 3 3
1 1 1 5
2 1 1 5
1 1 2 5
3 1 3 5
2 6 2 6
*/

洛谷 P7155 [USACO20DEC] Spaceship P(dp)的更多相关文章

  1. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

  2. 洛谷2344 奶牛抗议(DP+BIT+离散化)

    洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...

  3. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  4. 洛谷P1541 乌龟棋(四维DP)

    To 洛谷.1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游 ...

  5. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  6. 【题解】洛谷P1052 [NOIP2005TG] 过河(DP+离散化)

    题目来源:洛谷P1052 思路 一开始觉得是贪心 但是仔细一想不对 是DP 再仔细一看数据不对 有点大 如果直接存下的话 显然会炸 那么就需要考虑离散化 因为一步最大跳10格 那么我们考虑从1到10都 ...

  7. 洛谷1736(二维dp+预处理)

    洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...

  8. 【洛谷4933】大师(DP)

    题目: 洛谷4933 分析: (自己瞎yy的DP方程竟然1A了,写篇博客庆祝一下) (以及特斯拉电塔是向Red Alert致敬吗233) 这里只讨论公差不小于\(0\)的情况,小于\(0\)的情况进行 ...

  9. C++ 洛谷 2014 选课 from_树形DP

    洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...

随机推荐

  1. Python中的sys.stdin和input、sys.stdout与print--附带讲解剑指offer42-连续子数组的最大和

    2020秋招季,终于开始刷第一套真题了,整套试卷就一道编程题,还是剑指offer上的原题,结果答案死活不对,最后干脆直接提交答案算了,看了下别人的答案,原来是输入数据没有获取的原因,不过这个语法sys ...

  2. CentOS 文本编辑器

    目录 1.Nano 1.1.基础命令 1.2.快捷操作 1.3.配置文件 2.Vim 2.1.四大模式 2.2.基础命令 2.3.标准操作 2.4.高级操作 2.5.配置文件 Linux 终端的文本编 ...

  3. Map中getOrDefault()与数值进行比较

    一般用哈希表计数时,value类型通常为Integer.如果想比较某个key出现的次数,使用get(key)与某个数值进行比较是有问题的.当哈希表中并不包含该key时,因为此时get方法返回值是nul ...

  4. 力扣 - 剑指 Offer 53 - II. 0~n-1中缺失的数字

    题目 剑指 Offer 53 - II. 0-n-1中缺失的数字 思路1 排序数组找数字使用二分法 通过题目,我们可以得到一个规律: 如果数组的索引值和该位置的值相等,说明还未缺失数字 一旦不相等了, ...

  5. 改善深层神经网络-week2编程题(Optimization Methods)

    1. Optimization Methods Gradient descent goes "downhill" on a cost function \(J\). Think o ...

  6. JVM:参数调优

    JVM:参数调优 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 前言 查看 JVM 系统默认值:使用 jps 和 jinfo 进行查看 -Xms:初始堆空间 - ...

  7. 认识spring security

    在一个系统中认证和授权是常有的事情,现在比较流行的框架有spring security.shiro等等.他们都能很好的帮助我们完成认证和授权的功能.那么假如说让我们自己完成一个登录那么应该大致的流程是 ...

  8. hystrix的配置说明

    在我们的日常开发中,有些时候需要和第三方系统进行对接操作,或者调用其他系统的 api 接口,但是我们不能保证这些第三方系统的接口一定是稳定的,当系统中产生大量的流量来访问这些第三方接口,这些第三方系统 ...

  9. Noip模拟33垫底反思 2021.8.8

    T1 Hunter 考场上没写$%p$挂了25分.也是很牛皮,以后打完过了样例一定要检查 因为样例太小了......很容易忘记%%%% 正解随便手模就出来了. 1 #include<bits/s ...

  10. 热身训练1 Blood Cousins Return

    点此看题 简要题面: 一棵树上有n个节点,每个节点有对应的名字(名字可重复). 每次询问,求深度比$vi$多$ki$的$vi$的儿子中,有多少种名字 分析: Step1: 我们可以懂$DFS$轻松找到 ...