题面传送门

原题题号:Codeforces Gym 101821B

题意:

给出一个排列 \(p\),要你找出一个最长上升子序列(LIS)和一个最长下降子序列(LDS),满足它们没有公共元素。或告知无解。

\(1 \leq n \leq 5 \times 10^5\)。

wxh 太强辣!wxhtxdy!

首先可以发现一个小性质,那就是原序列任意一个 LIS 和 LDS 至多只有 \(1\) 个公共元素。

假设它们有 \(2\) 个公共元素 \(p_i,p_j(i<j)\),由于 \(p_i,p_j\) 同时包含在一个 LIS 中,必有 \(p_i<p_j\)。又因为 \(p_i,p_j\) 同时包含在一个 LDS 中,\(p_i>p_j\),矛盾!

我们预处理出 \(f_i\) 表示包含 \(p_i\) 的 LDS 个数,\(sum\) 表示总的 LDS 个数。由于这些数可能很大,我们可以将它模上一个比较大的数。

由于我们只需构造出一组合法的解,我们的目标就是检验是否存在一个合法的 LIS,然后顺带着找出原序列扣除掉这个 LIS 后得到的序列 \(p'\) 的一个 LDS

我们考虑不合法的 LIS 长啥样,假设这个 LIS 为 \([a_{x_1},a_{x_2},\dots,a_{x_l}]\),因为它不合法,所以不存在与它没有交集的 LDS,也就是所有 LDS 都与它有交集。

而根据之前的性质一个 LIS 和 LDS 至多只有 \(1\) 个公共元素,故 \(f_{x_1}+f_{x_2}+\dots+f_{x_l}=sum\)。

那么怎样找这样一个 LIS 呢?

先用树状数组求出 LIS、LDS 的长度,以及上文提到的 \(f_i,sum\) 的值。

求 LIS 的时候结构体里另外维护四个值 \(m_1,m_2,p_1,p_2\),表示在满足上升子序列的长度最大的情况下,两个不同的 \(f_{x_1}+f_{x_2}+\dots+f_{x_l}\) 的值,以及它们对应的前驱。

如果发现存在一个 LIS 它的 \(f_{x_1}+f_{x_2}+\dots+f_{x_l} \neq sum\),那么直接跳出输出就可以了。

/*
Contest: -
Problem: Codeforces Gym 101821 B
Author: tzc_wk
Time: 2020.10.4
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=23895631;
inline void add(int &x,int v){
x+=v;if(x>=MOD) x-=MOD;
}
struct numway{
int val,way;
numway(int _val=0,int _way=0){val=_val;way=_way;}
numway operator +(numway x){
numway z=*this;
if(x.val>z.val) z.val=x.val,z.way=0;
if(x.val==z.val) z.way=(z.way+x.way)%MOD;
return z;
}
};
int n=read(),a[500005];
struct bit1{
numway tr[500005];
inline void clear(){
for(int i=1;i<=n;i++)
tr[i].val=tr[i].way=0;
}
inline void modify(int x,numway y){
for(int i=x;i<=n;i+=(i&(-i)))
tr[i]=tr[i]+y;
}
inline numway query(int x){
numway ans(0,1);
for(int i=x;i;i-=(i&(-i)))
ans=ans+tr[i];
return ans;
}
} b1;
struct bit2{
int tr[500005];
inline void clear(){
fill0(tr);
}
inline void modify(int x,int y){
for(int i=x;i<=n;i+=(i&(-i)))
tr[i]=max(tr[i],y);
}
inline int query(int x){
int ans=0;
for(int i=x;i;i-=(i&(-i)))
ans=max(ans,tr[i]);
return ans;
}
} b2;
int lds_len=0,lis_len=0;
numway lds1[500005],lds2[500005];
int f[500005];
struct event{
int val,m1,m2,p1,p2;
event(int _val=0,int _m1=-1,int _m2=-1,int _p1=0,int _p2=0){
val=_val;m1=_m1;m2=_m2;p1=_p1;p2=_p2;
}
friend event operator +(event a,event b){
if(a.val>b.val) return a;
if(a.val<b.val) return b;
if(a.m1==-1) return b;
else if(a.m2==-1){
if(b.m1==-1||b.m1==a.m1) a.m2=b.m2,a.p2=b.p2;
else a.m2=b.m1,a.p2=b.p1;
return a;
}
else return a;
}
};
struct bit3{
event tr[500005];
inline void modify(int x,event v){
for(int i=x;i<=n;i+=(i&(-i)))
tr[i]=tr[i]+v;
}
inline event query(int x){
event ans(0,0,-1,0,0);
for(int i=x;i;i-=(i&(-i)))
ans=ans+tr[i];
return ans;
}
} b3;
event lis[500005];
vector<int> ans_lis,ans_lds;
bool cant[500005];
struct bit4{
pii tr[500005];
inline void modify(int x,pii v){
for(int i=x;i<=n;i+=(i&(-i)))
tr[i]=max(tr[i],v);
}
inline pii query(int x){
pii ans=make_pair(0,0);
for(int i=x;i;i-=(i&(-i)))
ans=max(ans,tr[i]);
return ans;
}
} b4;
pii lls[500005];
inline void dump(int x,int y){
while(x){
ans_lis.pb(x);cant[x]=1;
if(lis[x].m1==y){y=(y-f[x]+MOD)%MOD;x=lis[x].p1;}
else{y=(y-f[x]+MOD)%MOD;x=lis[x].p2;}
}
reverse(all(ans_lis));
printf("%d\n",lis_len);
foreach(it,ans_lis) printf("%d ",*it);printf("\n");
for(int i=n;i>=1;i--){
if(cant[i]) continue;
lls[i]=b4.query(a[i]-1);
lls[i].fi++;
b4.modify(a[i],make_pair(lls[i].fi,i));
}
for(int i=1;i<=n;i++){
if(lls[i].fi==lds_len){
for(int j=i;j;j=lls[j].se){
ans_lds.pb(j);
}
break;
}
}
printf("%d\n",lds_len);
foreach(it,ans_lds) printf("%d ",*it);printf("\n");
}
int main(){
for(int i=1;i<=n;i++) a[i]=read();
b1.clear();
for(int i=1;i<=n;i++){
lds1[i]=b1.query(n-a[i]);lds1[i].val++;
b1.modify(n-a[i]+1,lds1[i]);lds_len=max(lds1[i].val,lds_len);
}
b1.clear();
for(int i=n;i>=1;i--){
lds2[i]=b1.query(a[i]-1);lds2[i].val++;
b1.modify(a[i],lds2[i]);
}
// for(int i=1;i<=n;i++) printf("%d %d %d %d\n",lds1[i].val,lds1[i].way,lds2[i].val,lds2[i].way);
for(int i=1;i<=n;i++){
if(lds1[i].val+lds2[i].val-1==lds_len){
f[i]=1ll*lds1[i].way*lds2[i].way%MOD;
}
// cout<<f[i]<<endl;
}
int sum=0;
for(int i=1;i<=n;i++){
if(lds1[i].val==lds_len)
sum=(sum+lds1[i].way)%MOD;
}
// cout<<sum<<endl;
for(int i=1;i<=n;i++){
int x=b2.query(a[i]-1);
b2.modify(a[i],x+1);
lis_len=max(lis_len,x+1);
}
for(int i=1;i<=n;i++){
lis[i]=b3.query(a[i]-1);
lis[i].val++;
if(lis[i].m1!=-1){
lis[i].m1=(lis[i].m1+f[i])%MOD;
}
if(lis[i].m2!=-1){
lis[i].m2=(lis[i].m2+f[i])%MOD;
}
// printf("%d %d %d %d %d\n",lis[i].val,lis[i].m1,lis[i].m2,lis[i].p1,lis[i].p2);
if(lis[i].val==lis_len){
if(lis[i].m1!=-1&&lis[i].m1!=sum){
dump(i,lis[i].m1);return 0;
}
if(lis[i].m2!=-1&&lis[i].m2!=sum){
dump(i,lis[i].m2);return 0;
}
}
b3.modify(a[i],event(lis[i].val,lis[i].m1,lis[i].m2,(lis[i].m1!=-1)?(i):(0),(lis[i].m2!=-1)?(i):(0)));
}
printf("IMPOSSIBLE\n");
return 0;
}

【2020五校联考NOIP #3】序列的更多相关文章

  1. 【2020五校联考NOIP #6】三格缩进

    题意: 给出 \(n\) 个数 \(a_1,a_2,\dots,a_n\),你要进行 \(m\) 次操作,每次操作有两种类型: \(1\ p\ x\):将 \(a_p\) 改为 \(x\). \(2\ ...

  2. 【2020五校联考NOIP #8】自闭

    题目传送门 题意: 有一个 \(n \times m\) 的矩阵,里面已经填好了 \(k\) 个非负整数. 问是否能在其它 \(n \times m-k\) 个格子里各填上一个非负整数,使得得到的矩阵 ...

  3. 【2020五校联考NOIP #8】狗

    题面传送门 原题题号:Codeforces 883D 题意: 有 \(n\) 个位置,每个位置上要么有一条狗,要么有一根骨头,要么啥都没有. 现在你要给每个狗指定一个方向(朝左或朝右). 朝左的狗可以 ...

  4. 【2020五校联考NOIP #7】道路扩建

    题面传送门 题意: 给出一张 \(n\) 个点 \(m\) 条边的无向图 \(G\),第 \(i\) 条边连接 \(u_i,v_i\) 两个点,权值为 \(w_i\). 你可以进行以下操作一次: 选择 ...

  5. 【2020五校联考NOIP #4】今天的你依旧闪耀

    题面传送门 题意: 对于一个长度为 \(n\)(\(n\) 为偶数)的排列 \(p\),定义一次"变换"后得到的排列 \(p'\) 为: \(p'_i=\begin{cases}p ...

  6. 【2020五校联考NOIP #2】矩阵

    咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...

  7. 【2020五校联考NOIP #7】伟大的卫国战争

    题面传送门 题意: 数轴上有 \(n\) 个点,现在要在它们之间连 \(m\) 条边,第 \(i\) 条边连接 \(a_i,b_i\) 两个点. 现在你要钦定每条边连在数轴的上方还是下方,使得任意两条 ...

  8. 【2020五校联考NOIP #6】最佳观影

    题意: 给出一个 \(k \times k\) 的网格和 \(n\) 次操作.其中 \(k\) 为奇数. 每次操作给出一个数 \(m\).每次你要找出一个三元组 \((x,l,r)\) 使得: \(r ...

  9. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

随机推荐

  1. 初始HTML05

    HTML 表单控件属性 表单控件可设置以下标签属性 属性名 取值 type 设置控件类型 name 设置控件名称,最终与值一并发送给服务器 value 设置控件的值 placeholder 设置输入框 ...

  2. logging模块二

    背景,在学习logging时总是遇到无法理解的问题,总结,尝试一下更清晰明了了,让我们开始吧! logging模块常用format格式说明 %(levelno)s: 打印日志级别的数值 %(level ...

  3. Noip模拟4(忁靈霁) 2021.6.6

    T1 随(Rand) 由杠哥大定理可得,这题目前不可做,先跳走啦,咕咕.... T2 单(single) 考场上,简单看一眼就看出是个高斯消元,然后..... 板子没记住!!! 然而这不是最糟糕的.. ...

  4. 震惊,hzoi的考试竟然折磨简单,活到爆!

    众所周知,hzoi的考试题非常"简单",那么究竟有多简单呢?最近,一位外国小哥开发出了hzoi的考试竟然折磨简单,活到爆!的方法,这究竟是怎么一回事呢?快和小编一起来看看吧- 满分 ...

  5. Oracle 11g 新建用户

    create user XXXuser identified by XXXpassword;--创建用户XXXuser,设置初始密码XXXpassword alter user XXXuser ide ...

  6. advanced base-scripting guide in chinese(高级Bash脚本编程指南-10)

    <高级Bash脚本编程指南>Revision 10中文版 github上链接地址: https://github.com/LinuxStory/Advanced-Bash-Scriptin ...

  7. Ubuntu鼠标变十字 不能点击

    出现这种情况,应该是bash 直接运行了python文件 系统中出现了一个import 进程. python文件中除了注释应该是import在最前边 ps -ef|grep import 可以查看系统 ...

  8. Linux 内核网桥源码分析

    Linux网桥源码的实现 转自: Linux二层网络协议 Linux网桥源码的实现 1.调用 在src/net/core/dev.c的软中断函数static void net_rx_action(st ...

  9. 【Azure 应用服务】App Service for Linux 中实现 WebSocket 功能 (Python SocketIO)

    问题描述 使用 python websockets 模块作为Socket的服务端,发布到App Service for Linux环境后,发现Docker Container无法启动.错误消息为: 2 ...

  10. 面试题系列:用了这么多年的 Java 泛型,我竟然只知道它的皮毛

    面试题:说说你对泛型的理解? 面试考察点 考察目的:了解求职者对于Java基础知识的掌握程度. 考察范围:工作1-3年的Java程序员. 背景知识 Java中的泛型,是JDK5引入的一个新特性. 它主 ...