题面传送门

出题人可能原本感觉没啥难度的 T2 竟然变成了防 AK 题,奇迹奇迹(

首先带着这个 \(\max\) 肯定不太好处理,考虑找出 \(f(S)\) 的等价表达。我们考虑以 \(1\) 为根 DFS 一遍整棵树,然后考虑贪心。每次贪心地找到所有路径中 LCA 最深的路径,如果这条路径上所有节点都没被访问过我们就将该路径上所有节点都设为被访问过并令答案加一,否则我们直接不管这条路径。感性理解一下可知我们采取这样的策略肯定能取到较多的路径。

接下来考虑求答案的事。考虑方案数转期望,我们求出每个点有多大概率作为某个被选择路径的 LCA 出现过,然后把它们加起来再乘上 \(2^{n^2}\) 就是答案。那么怎么求呢?注意到对于一个点如果它的某个祖先被访问了,那么这个点也没有用了。因此我们可以将选择一条路径视作直接将这个子树吃掉(虽然这样说好像有点奇怪?),这样就可以 DP 了,我们设 \(dp_{u,j}\) 表示钦定了 LCA 在 \(u\) 子树内的路径,还有 \(j\) 个点没有被吃掉的概率,转移就将两个子树合并起来即可,设 \(u\) 为 \(v\) 的父亲,那么显然 \(dp_{u,0}\) 只能转移到新的 \(dp_{u,0}\),而对于 \(i\ne 0\),\(j\in[0,siz_y]\),\(dp_{u,i}\) 和 \(dp_{v,j}\) 有 \(\dfrac{1}{2^{2ij}}\) 的概率转移到 \(dp_{u,i+j}\),有 \(1-\dfrac{1}{2^{2ij}}\) 的概率转移到 \(dp_{u,0}\)。树上背包求一下即可。最终 \(dp_{i,0}\) 即为 \(i\) 作为某条路径 LCA 出现的概率。时间复杂度 \(\mathcal O(n^2)\)。

总结:为什么这样的题目要找出 \(f(S)\) 的等价表达?因为这里的 \(f(S)\) 是一个找最大值的形式,而求一车东西的 \(\max\) 这个东西是很难计算的(当然有些情况下确实是可以,不过要用 Min-Max 容斥等技巧,并且局限性比较大),(当然有的数据范围很小的题目也可以用这个做法,比方说一些 DP 套 DP,如 TJOI2018 游园)。因此我们需要想办法将其转化为求和的形式,这时候就要找到它的等价表达。类似的题目还有 CF1067E Random Forest Rank。

const int MAXN=5000;
const int INV2=MOD+1>>1;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,ipw2[MAXN*MAXN+5],dp[MAXN+5][MAXN+5],res=0,siz[MAXN+5];
link_list<int,MAXN,MAXN*2> g;
void dfs(int x,int f){
dp[x][0]=dp[x][1]=INV2;siz[x]=1;
for(int e=g.hd[x];e;e=g.nxt[e]){
int y=g.val[e];if(y==f) continue;dfs(y,x);
static int tmp[MAXN+5];memset(tmp,0,sizeof(tmp));
for(int i=1;i<=siz[x];i++) for(int j=0;j<=siz[y];j++){
tmp[i+j]=(tmp[i+j]+1ll*dp[x][i]*dp[y][j]%MOD*ipw2[2*i*j])%MOD;
tmp[0]=(tmp[0]+1ll*dp[x][i]*dp[y][j]%MOD*(1-ipw2[2*i*j]+MOD))%MOD;
} siz[x]+=siz[y];for(int i=1;i<=siz[x];i++) dp[x][i]=tmp[i];
dp[x][0]=(dp[x][0]+tmp[0])%MOD;
} res=(res+dp[x][0])%MOD;//printf("%d %d\n",x,dp[x][0]);
}
int main(){
freopen("thousands.in","r",stdin);
freopen("thousands.out","w",stdout);
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),g.ins(u,v),g.ins(v,u);
for(int i=(ipw2[0]=1);i<=n*n;i++) ipw2[i]=1ll*ipw2[i-1]*INV2%MOD;
dfs(1,0);printf("%d\n",1ll*res*qpow(2,n*n)%MOD);
return 0;
}

NFLSOJ #10317. -「2020联考北附2」三千世界(找等价表达+树形 dp)的更多相关文章

  1. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  2. [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)

    [多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...

  3. Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】

    题目分析: 首先跑个暴力,求一下有多少种状态,发现只有18xxxx种,然后每个状态有10的转移,所以复杂度大约是200w,然后利用进制转换的技巧求一下每个状态的十进制码就行了. 代码: #includ ...

  4. noi省选 [九省联考2018]一双木棋题解(状压dp)

    比浙江简单多了........ 题目转送:https://www.luogu.org/problemnew/show/P4363 分析: 我们注意到n和m都很小,考虑一下状压dp. 显然,棋子摆成的形 ...

  5. 洛谷P4363 [九省联考2018]一双木棋chess 【状压dp】

    题目 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子当且仅当这个 ...

  6. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  7. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  8. BZOJ2591/LG3047 「USACO12FEB」Nearby Cows 换根树形DP

    问题描述 BZOJ2591 LG3047 题解 换根树形DP. 设 \(opt[i][j]\) 代表 当 \(1\) 为根时,\(i\) 为根的子树中,到 \(i\) 的距离为 \(j\) 的权值和 ...

  9. LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP

    题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...

随机推荐

  1. 在python中实现BASE64编码

    什么是Base64编码 BASE64是用于传输8Bit字节的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法. 如下是转换表:The Base64 Alphabet Base64编码可以 ...

  2. javascript高级程序设计第三版书摘

    在HTML 中使用JavaScript <script>元素 在使用<script>元素嵌入 JavaScript 代码时,只须为<script>指定 type 属 ...

  3. leetcode 6/300 Z字型变换 py

    目录 题目说明 方法一:利用flag 题目说明 方法一:利用flag 简单来说就是利用flag来表示方向,真的神来之笔. class Solution: def convert(self, s: st ...

  4. Redis:学习笔记-02

    Redis:学习笔记-02 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 4. 事物 Redis 事务本 ...

  5. 阿里大神favoorr提供的书单

     Thoughtwoks中国的推荐书单 <http://www.douban.com/doulist/2012097/ >新浪微博-秦迪 <http://blog.2baxb.me/ ...

  6. [火星补锅] 水题大战Vol.2 T2 && luogu P3623 [APIO2008]免费道路 题解

    前言: 如果我自己写的话,或许能想出来正解,但是多半会因为整不出正确性而弃掉. 解析: 这题算是对Kruskal的熟练运用吧. 要求一颗生成树.也就是说,最后的边数是确定的. 首先我们容易想到一个策略 ...

  7. 攻防世界 杂项 10.2017_Dating_in_Singapore

    题目描述: 01081522291516170310172431-050607132027262728-0102030209162330-02091623020310090910172423-0201 ...

  8. P2120 [ZJOI2007]仓库建设

    P2120 [ZJOI2007]仓库建设 怎么说呢?算是很水的题了吧... 只要不要一开始就把dp想错就行... #include<bits/stdc++.h> #define ll lo ...

  9. hdu 1166 敌兵布阵(简单线段树or树状数组)

    题意: N个工兵营地,第i个营地有ai个人. 三种操作: 1.第i个营地增加x个人. 2.第i个营地减少x个人. 3.查询第i个到第j个营地的总人数. 思路: 线段树or树状数组 代码:(树状数组) ...

  10. 使用.NET6打造动态API

    ApiLite是直接将Service层自动生成api路由,可以不用添加Controller,支持模块插件化,在项目开发中能够提高工作效率,降低代码量. 开发环境 .NET SDK 6.0.100-rc ...