Python实现ID3(信息增益)
Python实现ID3(信息增益)
运行环境
- Pyhton3
- treePlotter模块(画图所需,不画图可不必)
- matplotlib(如果使用上面的模块必须)
计算过程
st=>start: 开始
e=>end
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否建树完成
su=>subroutine: 递归建树
op3=>operation: 选择熵最大的为判决点
op4=>operation: 测试判决情况
op5=>operation: 划分为判决节点子树
st->op1->op2->cond
cond(no)->su->op5->op3->su
cond(yes)->op4->e
输入样例
/* Dataset.txt */
训练集:
    outlook    temperature    humidity    windy
    ---------------------------------------------------------
    sunny       hot            high         false         N
    sunny       hot            high         true          N
    overcast    hot            high         false         Y
    rain        mild           high         false         Y
    rain        cool           normal       false         Y
    rain        cool           normal       true          N
    overcast    cool           normal       true          Y
测试集
    outlook    temperature    humidity    windy
    ---------------------------------------------------------
    sunny       mild           high         false
    sunny       cool           normal       false
    rain        mild           normal       false
    sunny       mild           normal       true
    overcast    mild           high         true
    overcast    hot            normal       false
    rain        mild           high         true
代码实现
# -*- coding: utf-8 -*-
__author__ = 'Wsine'
from math import log
import operator
import treePlotter
def calcShannonEnt(dataSet):
	"""
	输入:数据集
	输出:数据集的香农熵
	描述:计算给定数据集的香农熵
	"""
	numEntries = len(dataSet)
	labelCounts = {}
	for featVec in dataSet:
		currentLabel = featVec[-1]
		if currentLabel not in labelCounts.keys():
			labelCounts[currentLabel] = 0
		labelCounts[currentLabel] += 1
	shannonEnt = 0.0
	for key in labelCounts:
		prob = float(labelCounts[key])/numEntries
		shannonEnt -= prob * log(prob, 2)
	return shannonEnt
def splitDataSet(dataSet, axis, value):
	"""
	输入:数据集,选择维度,选择值
	输出:划分数据集
	描述:按照给定特征划分数据集;去除选择维度中等于选择值的项
	"""
	retDataSet = []
	for featVec in dataSet:
		if featVec[axis] == value:
			reduceFeatVec = featVec[:axis]
			reduceFeatVec.extend(featVec[axis+1:])
			retDataSet.append(reduceFeatVec)
	return retDataSet
def chooseBestFeatureToSplit(dataSet):
	"""
	输入:数据集
	输出:最好的划分维度
	描述:选择最好的数据集划分维度
	"""
	numFeatures = len(dataSet[0]) - 1
	baseEntropy = calcShannonEnt(dataSet)
	bestInfoGain = 0.0
	bestFeature = -1
	for i in range(numFeatures):
		featList = [example[i] for example in dataSet]
		uniqueVals = set(featList)
		newEntropy = 0.0
		for value in uniqueVals:
			subDataSet = splitDataSet(dataSet, i, value)
			prob = len(subDataSet)/float(len(dataSet))
			newEntropy += prob * calcShannonEnt(subDataSet)
		infoGain = baseEntropy - newEntropy
		if (infoGain > bestInfoGain):
			bestInfoGain = infoGain
			bestFeature = i
	return bestFeature
def majorityCnt(classList):
	"""
	输入:分类类别列表
	输出:子节点的分类
	描述:数据集已经处理了所有属性,但是类标签依然不是唯一的,
		  采用多数判决的方法决定该子节点的分类
	"""
	classCount = {}
	for vote in classList:
		if vote not in classCount.keys():
			classCount[vote] = 0
		classCount[vote] += 1
	sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True)
	return sortedClassCount[0][0]
def createTree(dataSet, labels):
	"""
	输入:数据集,特征标签
	输出:决策树
	描述:递归构建决策树,利用上述的函数
	"""
	classList = [example[-1] for example in dataSet]
	if classList.count(classList[0]) == len(classList):
		# 类别完全相同,停止划分
		return classList[0]
	if len(dataSet[0]) == 1:
		# 遍历完所有特征时返回出现次数最多的
		return majorityCnt(classList)
	bestFeat = chooseBestFeatureToSplit(dataSet)
	bestFeatLabel = labels[bestFeat]
	myTree = {bestFeatLabel:{}}
	del(labels[bestFeat])
	# 得到列表包括节点所有的属性值
	featValues = [example[bestFeat] for example in dataSet]
	uniqueVals = set(featValues)
	for value in uniqueVals:
		subLabels = labels[:]
		myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
	return myTree
def classify(inputTree, featLabels, testVec):
	"""
	输入:决策树,分类标签,测试数据
	输出:决策结果
	描述:跑决策树
	"""
	firstStr = list(inputTree.keys())[0]
	secondDict = inputTree[firstStr]
	featIndex = featLabels.index(firstStr)
	for key in secondDict.keys():
		if testVec[featIndex] == key:
			if type(secondDict[key]).__name__ == 'dict':
				classLabel = classify(secondDict[key], featLabels, testVec)
			else:
				classLabel = secondDict[key]
	return classLabel
def classifyAll(inputTree, featLabels, testDataSet):
	"""
	输入:决策树,分类标签,测试数据集
	输出:决策结果
	描述:跑决策树
	"""
	classLabelAll = []
	for testVec in testDataSet:
		classLabelAll.append(classify(inputTree, featLabels, testVec))
	return classLabelAll
def storeTree(inputTree, filename):
	"""
	输入:决策树,保存文件路径
	输出:
	描述:保存决策树到文件
	"""
	import pickle
	fw = open(filename, 'wb')
	pickle.dump(inputTree, fw)
	fw.close()
def grabTree(filename):
	"""
	输入:文件路径名
	输出:决策树
	描述:从文件读取决策树
	"""
	import pickle
	fr = open(filename, 'rb')
	return pickle.load(fr)
def createDataSet():
	"""
	outlook->  0: sunny | 1: overcast | 2: rain
	temperature-> 0: hot | 1: mild | 2: cool
	humidity-> 0: high | 1: normal
	windy-> 0: false | 1: true
	"""
	dataSet = [[0, 0, 0, 0, 'N'],
			   [0, 0, 0, 1, 'N'],
			   [1, 0, 0, 0, 'Y'],
			   [2, 1, 0, 0, 'Y'],
			   [2, 2, 1, 0, 'Y'],
			   [2, 2, 1, 1, 'N'],
			   [1, 2, 1, 1, 'Y']]
	labels = ['outlook', 'temperature', 'humidity', 'windy']
	return dataSet, labels
def createTestSet():
	"""
	outlook->  0: sunny | 1: overcast | 2: rain
	temperature-> 0: hot | 1: mild | 2: cool
	humidity-> 0: high | 1: normal
	windy-> 0: false | 1: true
	"""
	testSet = [[0, 1, 0, 0],
			   [0, 2, 1, 0],
			   [2, 1, 1, 0],
			   [0, 1, 1, 1],
			   [1, 1, 0, 1],
			   [1, 0, 1, 0],
			   [2, 1, 0, 1]]
	return testSet
def main():
	dataSet, labels = createDataSet()
	labels_tmp = labels[:] # 拷贝,createTree会改变labels
	desicionTree = createTree(dataSet, labels_tmp)
	#storeTree(desicionTree, 'classifierStorage.txt')
	#desicionTree = grabTree('classifierStorage.txt')
	print('desicionTree:\n', desicionTree)
	treePlotter.createPlot(desicionTree)
	testSet = createTestSet()
	print('classifyResult:\n', classifyAll(desicionTree, labels, testSet))
if __name__ == '__main__':
	main()
输出样例
desicionTree:
 {'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}
classifyResult:
 ['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']

附加文件
treePlotter.py
需要配置matplotlib才能使用
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
	createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \
							xytext=centerPt, textcoords='axes fraction', \
							va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
	numLeafs = 0
	firstStr = list(myTree.keys())[0]
	secondDict = myTree[firstStr]
	for key in secondDict.keys():
		if type(secondDict[key]).__name__ == 'dict':
			numLeafs += getNumLeafs(secondDict[key])
		else:
			numLeafs += 1
	return numLeafs
def getTreeDepth(myTree):
	maxDepth = 0
	firstStr = list(myTree.keys())[0]
	secondDict = myTree[firstStr]
	for key in secondDict.keys():
		if type(secondDict[key]).__name__ == 'dict':
			thisDepth = getTreeDepth(secondDict[key]) + 1
		else:
			thisDepth = 1
		if thisDepth > maxDepth:
			maxDepth = thisDepth
	return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
	xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
	yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
	createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
	numLeafs = getNumLeafs(myTree)
	depth = getTreeDepth(myTree)
	firstStr = list(myTree.keys())[0]
	cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff)
	plotMidText(cntrPt, parentPt, nodeTxt)
	plotNode(firstStr, cntrPt, parentPt, decisionNode)
	secondDict = myTree[firstStr]
	plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
	for key in secondDict.keys():
		if type(secondDict[key]).__name__ == 'dict':
			plotTree(secondDict[key], cntrPt, str(key))
		else:
			plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
			plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
			plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
	plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
def createPlot(inTree):
	fig = plt.figure(1, facecolor='white')
	fig.clf()
	axprops = dict(xticks=[], yticks=[])
	createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
	plotTree.totalw = float(getNumLeafs(inTree))
	plotTree.totalD = float(getTreeDepth(inTree))
	plotTree.xOff = -0.5 / plotTree.totalw
	plotTree.yOff = 1.0
	plotTree(inTree, (0.5, 1.0), '')
	plt.show()
Python实现ID3(信息增益)的更多相关文章
- Python实现ID3算法
		自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ... 
- 决策树ID3算法--python实现
		参考: 统计学习方法>第五章决策树] http://pan.baidu.com/s/1hrTscza 决策树的python实现 有完整程序 决策树(ID3.C4.5.CART ... 
- 决策树ID3算法的java实现
		决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分.比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳 ... 
- 使用Python读取Mp3的标签信息
		什么是ID3 MP3是音频文件最流行的格式,它的全称是 MPEG layer III.但是这种格式不支持对于音频内容的描述信息,包括歌曲名称.演唱者.专辑等等. 因此在1996年,Eric Kemp在 ... 
- 监督学习——决策树理论与实践(上):分类决策树
		1. 介绍 决策树是一种依托决策而建立起来的一种树.在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象/分类,树中的每一个分叉路 ... 
- 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)
		tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ... 
- 随机森林RandomForest
		ID3,C4.5决策树的生成: 输入:训练集D,特征集A,阈值eps, 输出:决策树T 若D中所有样本属于同一类Ck,则T为单节点树,将类Ck作为该结点的类标记,返回T: 若A为空集,即没有特征作为划 ... 
- sklearn--决策树和基于决策树的集成模型
		一.决策树 决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种 ... 
- 【小白学AI】随机森林 全解 (从bagging到variance)
		文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 随机森林 2 bagging 3 神秘的63.2% 4 随机森林 vs bagging 5 ... 
随机推荐
- HDOJ1010(BFS)
			//为什么bfs不行呢,想不通 #include<cstdio>#include<cstring>#include<queue>using namespace st ... 
- landsat8简介
			简介 2013年2月11号,NASA 成功发射了 Landsat 8 卫星,为走过了四十年辉煌岁月的 Landsat 计划重新注入新鲜血液.LandSat- 8上携带有两个主要载荷:OLI和TIRS. ... 
- 如何避免遭受HTTS中间人攻击
			先前为大家说明了如何对App的HTTPS通讯进行中间人攻击,听起来很吓人吧-表示若是使用手机的网银或购物等App,便有可能暴露在风险之中. 会发生HTTPS遭受拦截的主要原因是客户端的App未对服务器 ... 
- Shell的概念
			Linux系统分为三个重要部分: 1:kernel(核心) 2:Shell 3:应用程序和工具 
- 兰勃特投影C#实现
			兰勃特投影是等面积投影. static double PI = 3.1415926; //------------------------------------------------------- ... 
- Semantic UI 使用回调函数
			html代码: <div class="ui dropdown item" id="region"> <div class="tex ... 
- 《你是我的小羊驼》游戏ios源码
			<ignore_js_op> <ignore_js_op> <ignore_js_op> <ignore_js_op>源码下载:http://code. ... 
- YUM软件管理
			YUM是一个RPM的前端程序,主要目的是设计用来解决RPM的依赖关系的问题,而不用手动安装所依赖的所有软件.它使用仓库保存管理RPM软件包,仓库的配置文件保存在/etc/yum.repos.d/目录下 ... 
- C#读取xlsx文件Excel2007
			读取Excel 2007的xlsx文件和读取老的.xls文件是一样的,都是用Oledb读取,仅仅连接字符串不同而已. 具体代码实例: public static DataTable GetExcelT ... 
- 两个和尚抬水有水喝,三个和尚抬水没水喝------IT项目管理之组织架构
			说到项目经理岗位,一般的想法是,一个项目只能有一个项目经理,否则责任不明,互相推诿.偏偏IT项目需要有两个甚至三个项目经理.原因何在呢? 典型的IT项目(不包含纯技术或工具类项目)是把用户的需求转化成 ... 
