Python实现ID3(信息增益)
Python实现ID3(信息增益)
运行环境
- Pyhton3
- treePlotter模块(画图所需,不画图可不必)
- matplotlib(如果使用上面的模块必须)
计算过程
st=>start: 开始
e=>end
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否建树完成
su=>subroutine: 递归建树
op3=>operation: 选择熵最大的为判决点
op4=>operation: 测试判决情况
op5=>operation: 划分为判决节点子树
st->op1->op2->cond
cond(no)->su->op5->op3->su
cond(yes)->op4->e
输入样例
/* Dataset.txt */
训练集:
outlook temperature humidity windy
---------------------------------------------------------
sunny hot high false N
sunny hot high true N
overcast hot high false Y
rain mild high false Y
rain cool normal false Y
rain cool normal true N
overcast cool normal true Y
测试集
outlook temperature humidity windy
---------------------------------------------------------
sunny mild high false
sunny cool normal false
rain mild normal false
sunny mild normal true
overcast mild high true
overcast hot normal false
rain mild high true
代码实现
# -*- coding: utf-8 -*-
__author__ = 'Wsine'
from math import log
import operator
import treePlotter
def calcShannonEnt(dataSet):
"""
输入:数据集
输出:数据集的香农熵
描述:计算给定数据集的香农熵
"""
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
def splitDataSet(dataSet, axis, value):
"""
输入:数据集,选择维度,选择值
输出:划分数据集
描述:按照给定特征划分数据集;去除选择维度中等于选择值的项
"""
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reduceFeatVec = featVec[:axis]
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
"""
输入:数据集
输出:最好的划分维度
描述:选择最好的数据集划分维度
"""
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
"""
输入:分类类别列表
输出:子节点的分类
描述:数据集已经处理了所有属性,但是类标签依然不是唯一的,
采用多数判决的方法决定该子节点的分类
"""
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True)
return sortedClassCount[0][0]
def createTree(dataSet, labels):
"""
输入:数据集,特征标签
输出:决策树
描述:递归构建决策树,利用上述的函数
"""
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
# 类别完全相同,停止划分
return classList[0]
if len(dataSet[0]) == 1:
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def classify(inputTree, featLabels, testVec):
"""
输入:决策树,分类标签,测试数据
输出:决策结果
描述:跑决策树
"""
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
def classifyAll(inputTree, featLabels, testDataSet):
"""
输入:决策树,分类标签,测试数据集
输出:决策结果
描述:跑决策树
"""
classLabelAll = []
for testVec in testDataSet:
classLabelAll.append(classify(inputTree, featLabels, testVec))
return classLabelAll
def storeTree(inputTree, filename):
"""
输入:决策树,保存文件路径
输出:
描述:保存决策树到文件
"""
import pickle
fw = open(filename, 'wb')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
"""
输入:文件路径名
输出:决策树
描述:从文件读取决策树
"""
import pickle
fr = open(filename, 'rb')
return pickle.load(fr)
def createDataSet():
"""
outlook-> 0: sunny | 1: overcast | 2: rain
temperature-> 0: hot | 1: mild | 2: cool
humidity-> 0: high | 1: normal
windy-> 0: false | 1: true
"""
dataSet = [[0, 0, 0, 0, 'N'],
[0, 0, 0, 1, 'N'],
[1, 0, 0, 0, 'Y'],
[2, 1, 0, 0, 'Y'],
[2, 2, 1, 0, 'Y'],
[2, 2, 1, 1, 'N'],
[1, 2, 1, 1, 'Y']]
labels = ['outlook', 'temperature', 'humidity', 'windy']
return dataSet, labels
def createTestSet():
"""
outlook-> 0: sunny | 1: overcast | 2: rain
temperature-> 0: hot | 1: mild | 2: cool
humidity-> 0: high | 1: normal
windy-> 0: false | 1: true
"""
testSet = [[0, 1, 0, 0],
[0, 2, 1, 0],
[2, 1, 1, 0],
[0, 1, 1, 1],
[1, 1, 0, 1],
[1, 0, 1, 0],
[2, 1, 0, 1]]
return testSet
def main():
dataSet, labels = createDataSet()
labels_tmp = labels[:] # 拷贝,createTree会改变labels
desicionTree = createTree(dataSet, labels_tmp)
#storeTree(desicionTree, 'classifierStorage.txt')
#desicionTree = grabTree('classifierStorage.txt')
print('desicionTree:\n', desicionTree)
treePlotter.createPlot(desicionTree)
testSet = createTestSet()
print('classifyResult:\n', classifyAll(desicionTree, labels, testSet))
if __name__ == '__main__':
main()
输出样例
desicionTree:
{'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}
classifyResult:
['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']

附加文件
treePlotter.py
需要配置matplotlib才能使用
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \
xytext=centerPt, textcoords='axes fraction', \
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thisDepth = getTreeDepth(secondDict[key]) + 1
else:
thisDepth = 1
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree)
depth = getTreeDepth(myTree)
firstStr = list(myTree.keys())[0]
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key], cntrPt, str(key))
else:
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
plotTree.totalw = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5 / plotTree.totalw
plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
Python实现ID3(信息增益)的更多相关文章
- Python实现ID3算法
自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...
- 决策树ID3算法--python实现
参考: 统计学习方法>第五章决策树] http://pan.baidu.com/s/1hrTscza 决策树的python实现 有完整程序 决策树(ID3.C4.5.CART ...
- 决策树ID3算法的java实现
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分.比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳 ...
- 使用Python读取Mp3的标签信息
什么是ID3 MP3是音频文件最流行的格式,它的全称是 MPEG layer III.但是这种格式不支持对于音频内容的描述信息,包括歌曲名称.演唱者.专辑等等. 因此在1996年,Eric Kemp在 ...
- 监督学习——决策树理论与实践(上):分类决策树
1. 介绍 决策树是一种依托决策而建立起来的一种树.在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象/分类,树中的每一个分叉路 ...
- 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...
- 随机森林RandomForest
ID3,C4.5决策树的生成: 输入:训练集D,特征集A,阈值eps, 输出:决策树T 若D中所有样本属于同一类Ck,则T为单节点树,将类Ck作为该结点的类标记,返回T: 若A为空集,即没有特征作为划 ...
- sklearn--决策树和基于决策树的集成模型
一.决策树 决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种 ...
- 【小白学AI】随机森林 全解 (从bagging到variance)
文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 随机森林 2 bagging 3 神秘的63.2% 4 随机森林 vs bagging 5 ...
随机推荐
- HDOJ1010(BFS)
//为什么bfs不行呢,想不通 #include<cstdio>#include<cstring>#include<queue>using namespace st ...
- landsat8简介
简介 2013年2月11号,NASA 成功发射了 Landsat 8 卫星,为走过了四十年辉煌岁月的 Landsat 计划重新注入新鲜血液.LandSat- 8上携带有两个主要载荷:OLI和TIRS. ...
- 如何避免遭受HTTS中间人攻击
先前为大家说明了如何对App的HTTPS通讯进行中间人攻击,听起来很吓人吧-表示若是使用手机的网银或购物等App,便有可能暴露在风险之中. 会发生HTTPS遭受拦截的主要原因是客户端的App未对服务器 ...
- Shell的概念
Linux系统分为三个重要部分: 1:kernel(核心) 2:Shell 3:应用程序和工具
- 兰勃特投影C#实现
兰勃特投影是等面积投影. static double PI = 3.1415926; //------------------------------------------------------- ...
- Semantic UI 使用回调函数
html代码: <div class="ui dropdown item" id="region"> <div class="tex ...
- 《你是我的小羊驼》游戏ios源码
<ignore_js_op> <ignore_js_op> <ignore_js_op> <ignore_js_op>源码下载:http://code. ...
- YUM软件管理
YUM是一个RPM的前端程序,主要目的是设计用来解决RPM的依赖关系的问题,而不用手动安装所依赖的所有软件.它使用仓库保存管理RPM软件包,仓库的配置文件保存在/etc/yum.repos.d/目录下 ...
- C#读取xlsx文件Excel2007
读取Excel 2007的xlsx文件和读取老的.xls文件是一样的,都是用Oledb读取,仅仅连接字符串不同而已. 具体代码实例: public static DataTable GetExcelT ...
- 两个和尚抬水有水喝,三个和尚抬水没水喝------IT项目管理之组织架构
说到项目经理岗位,一般的想法是,一个项目只能有一个项目经理,否则责任不明,互相推诿.偏偏IT项目需要有两个甚至三个项目经理.原因何在呢? 典型的IT项目(不包含纯技术或工具类项目)是把用户的需求转化成 ...