poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4969 | Accepted: 2231 |
Description
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
Source
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Pick定理的证明推荐个网址:episte.math.ntu.edu.tw/articles/sm/sm_25_10_1/page2.html
Area=i + b/2 - 1
i为内点 b为边上点
还有点在多边形边上运用GCD的证明,确实不会,希望大神看到给我解释一下
超时代码:
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm> #define eps 1e-8
#define MAXX 210
using namespace std; typedef struct point
{
double x;
double y;
}point;
typedef struct line
{
point st;
point ed;
}line; bool dy(double x,double y)
{
return x>y+eps;
}
bool xy(double x,double y)
{
return x<y-eps;
}
bool dyd(double x,double y)
{
return x>y-eps;
}
bool xyd(double x,double y)
{
return x<y+eps;
}
bool dd(double x,double y)
{
return fabs(x-y)<eps;
} double crossProduct(point a,point b,point c)//ac -> ab
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
}
double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool onSegment_1(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double minx=min(a.x,b.x);
double maxy=max(a.y,b.y);
double miny=min(a.y,b.y); if(dd(crossProduct(a,b,c),0.0) && xyd(c.x,maxx) && dyd(c.x,minx)
&& xyd(c.y,maxy) && dyd(c.y,miny))
return true;
return false;
} bool segIntersect_1(point p1,point p2,point p3,point p4)
{
double d1=crossProduct(p3,p4,p1);
double d2=crossProduct(p3,p4,p2);
double d3=crossProduct(p1,p2,p3);
double d4=crossProduct(p1,p2,p4); if(xy(d1*d2,0.0) && xy(d3*d4,0.0))
return true;
if(dd(d1,0.0) && onSegment_1(p3,p4,p1))
return true;
if(dd(d2,0.0) && onSegment_1(p3,p4,p2))
return true;
if(dd(d3,0.0) && onSegment_1(p1,p2,p3))
return true;
if(dd(d4,0.0) && onSegment_1(p1,p2,p4))
return true;
return false;
} point p[MAXX];
line li[MAXX];
int n; bool inPolygon_1(point pot)
{
int count=;
line l;
l.st=pot;
l.ed.x=1e10;
l.ed.y=pot.y;
p[n]=p[];
for(int i=; i<n; i++)
{
if( onSegment_1(p[i],p[i+],pot ))
return true;
if(!dd(p[i].y,p[i+].y))
{
int tmp=-;
if(onSegment_1(l.st,l.ed,p[i]))
tmp=i;
else if(onSegment_1(l.st,l.ed,p[i+]))
tmp=i+;
if(tmp != - && dd(p[tmp].y,max(p[i].y,p[i+].y)))
count++;
else if(tmp == - && segIntersect_1(p[i],p[i+],l.st,l.ed))
count++;
}
}
if(count % ==)
return true;
return false;
} bool inPolygon_2(point pot)
{
int count=;
line l;
l.st=pot;
l.ed.x=1e10;
l.ed.y=pot.y;
p[n]=p[];
for(int i=; i<n; i++)
{
if( onSegment_1(p[i],p[i+],pot ))
return false;
if(!dd(p[i].y,p[i+].y))
{
int tmp=-;
if(onSegment_1(l.st,l.ed,p[i]))
tmp=i;
else if(onSegment_1(l.st,l.ed,p[i+]))
tmp=i+;
if(tmp != - && dd(p[tmp].y,max(p[i].y,p[i+].y)))
count++;
else if(tmp == - && segIntersect_1(p[i],p[i+],l.st,l.ed))
count++;
}
}
if(count % ==)
return true;
return false;
} double Area(int n)
{
if(n<)return ;
int i;
double ret=0.0;
for(i=; i<=n; i++)
{
ret+=(crossProduct(p[],p[i-],p[i]));
}
return fabs(ret)/2.0;
} int main()
{
int m,i,j;
int ttmp=;
scanf("%d",&m);
while(m--)
{
scanf("%d",&n);
p[].x=;p[].y=;
double x,y;
double maxx=-,maxy=-,minx=,miny=;
for(i=; i<=n; i++)
{
scanf("%lf%lf",&x,&y);
p[i].x=p[i-].x+x;
p[i].y=p[i-].y+y;//printf("%lf %lf^^",p[i].x,p[i].y);
}
for(i=; i<=n; i++)
{
maxx=maxx>p[i].x?maxx:p[i].x;
maxy=maxy>p[i].y?maxy:p[i].y;
minx=minx<p[i].x?minx:p[i].x;
miny=miny<p[i].y?miny:p[i].y;
}//printf("%lf %lf^^%lf %lf**",minx,maxx,miny,maxy);
int in=,edge=,sum=;
point cas;
for(i=minx; i<=maxx; i++)
{
for(j=miny; j<=maxy; j++)
{
cas.x=i;cas.y=j;
if(inPolygon_1(cas))
{
sum++;
}
if(inPolygon_2(cas))
{
in++;
}
}
}
double area=Area(n);
edge=sum-in;
printf("Scenario #%d:\n",ttmp++);
printf("%d %d %.1lf\n",in,edge,area);
}
return ;
}
Pick定理运用
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm> #define eps 1e-8
#define MAXX 210 typedef struct point
{
double x;
double y;
}point; int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
} double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} point p[MAXX];
int onBorder(int n)
{
int sum=;
for(int i=; i<n; i++)
{
sum+=gcd(abs((int)(p[i].x-p[i+].x)),abs((int)(p[i].y-p[i+].y)));
}
return sum;
} double area(int n)
{
double ans=0.0;
for(int i=; i<=n; i++)
{
ans+=crossProduct(p[],p[i-],p[i]);
}
return fabs(ans)/2.0;
} int main()
{
int n,m,i,j;
scanf("%d",&n);
int cas=;
while(n--)
{
scanf("%d",&m);
p[].x=;p[].y=;
double x,y;
for(i=; i<=m; i++)
{
scanf("%lf%lf",&x,&y);
p[i].x=p[i-].x+x;
p[i].y=p[i-].y+y;
}
double are=area(m);
int edge=onBorder(m);
printf("Scenario #%d:\n",cas++);
printf("%d %d %.1lf\n\n",(int)are+-edge/,edge,are);
}
return ;
}
poj 1265 Area (Pick定理+求面积)的更多相关文章
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- Area - POJ 1265(pick定理求格点数+求多边形面积)
题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- poj 1654 Area (多边形求面积)
链接:http://poj.org/problem?id=1654 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ 1265 Area (pick定理)
题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
随机推荐
- Oracle DB SQL 性能分析器
• 确定使用SQL 性能分析器的优点 • 描述SQL 性能分析器工作流阶段 • 使用SQL 性能分析器确定数据库更改所带来的性能改进 SQL 性能分析器:概览 • 11g 的新增功能 • 目标用户:D ...
- jsp struts标签迭代各种数据
首先创建一个User对象 User user=new User(); user.setUserName("张三"); user.setAge(30); User user1=new ...
- python paramiko ssh.exec_command()启动tomcat服务器应用进程失败问题解决方法- Neither the JAVA_HOME nor the JRE_HOME environment variable is defined At least one of these environment variable is needed to run this progr
问题说明:
- ubunu下用命令设置壁纸
ubunu下用命令设置壁纸: gsettings set org.gnome.desktop.background picture-uri “file:[fileName]” eg:gsettings ...
- Android消息处理机制(Handler 与Message)---01
一.handler的使用场景为么会有handler?(部分内容图片摘自http://www.runoob.com/w3cnote/android-tutorial-handler-message.ht ...
- Best Time to Buy and Sell Stock
class Solution { public: int maxProfit(vector<int>& prices) { //eg: 5 6 2 3 1 4: // 记录i之前最 ...
- declare和typeset DEMO
declare=typeset,用法完成相同. declare不指定变量:显示所有变量的值. -r选项,把指定变量定义为只读变量: [xiluhua@vm-xiluhua][~]$ declare - ...
- JavaEE基础(二十七)/反射、JDK新特性
1.反射(类的加载概述和加载时机) A:类的加载概述 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. 加载 就是指将class文件读入 ...
- DedeCMS模板文件不存在,无法解析文档! 问题定位方法
生成静态的时候,经常会遇到“模板文件不存在,无法解析文 档!”的问题.很多朋友试过论坛里很多方法,都是针对某些人可以解决,某些人的问题依旧,为什么呢?其实问题很可能确实是多种多样的,表现结果却是一样, ...
- shareSDK集成步骤
按下面目录结构吧sdk的目录文件拷贝到自己的工程中 针对各个平台的分享格式,整理成了一个工具类,不同的平台分享的参数http://wiki.mob.com/不同平台分享内容的详细说明/ package ...