特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量



将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R。由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项。
2.奇异值分解(SVD)

其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。
将矩阵A乘它的转置,得到的方阵可用于求特征向量v,进而求出奇异值σ和左奇异向量u。


#coding:utf8
import numpy as np
np.set_printoptions(precision=4, suppress=True) def householder_reflection(A):
"""Householder变换"""
(r, c) = np.shape(A)
Q = np.identity(r)
R = np.copy(A)
for cnt in range(r - 1):
x = R[cnt:, cnt]
e = np.zeros_like(x)
e[0] = np.linalg.norm(x)
u = x - e
v = u / np.linalg.norm(u)
Q_cnt = np.identity(r)
Q_cnt[cnt:, cnt:] -= 2.0 * np.outer(v, v)
R = np.dot(Q_cnt, R) # R=H(n-1)*...*H(2)*H(1)*A
Q = np.dot(Q, Q_cnt) # Q=H(n-1)*...*H(2)*H(1) H为自逆矩阵
return (Q, R) def eig(A, epsilon=1e-10):
'''采用QR分解法计算特征值和特征向量 '''
(q,r_)=householder_reflection(A)
h = np.identity(A.shape[0])
for i in range(50):
B=np.dot(r_,q)
h=h.dot(q)
(q,r)=gram_schmidt(B)
if abs(r.trace()-r_.trace())< epsilon:
print("Converged in {} iterations!".format(i))
break
r_=r
return r,h def svd(A):
'''奇异值分解'''
n, m = A.shape
svd_ = []
k = min(n, m)
v_=eig(np.dot(A.T, A))[1] #np.linalg.eig(np.dot(A.T, A))[1]
for i in range(k):
v=v_.T[i]
u_ = np.dot(A, v)
s = np.linalg.norm(u_)
u = u_ / s
svd_.append((s, u, v))
ss, us, vs = [np.array(x) for x in zip(*svd_)]
return us.T,ss, vs if __name__ == "__main__": mat = np.array([
[2, 5, 3],
[1, 2, 1],
[4, 1, 1],
[3, 5, 2],
[5, 3, 1],
[4, 5, 5],
[2, 4, 2],
[2, 2, 5],
], dtype='float64')
u,s,v = svd(mat)
print u
print s
print v
print np.dot(np.dot(u,np.diag(s)),v)
特征值分解与奇异值分解(SVD)的更多相关文章
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...
- matlab特征值分解和奇异值分解
特征值分解 函数 eig 格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d. d = eig(A,B) %A.B为方阵,求广义特征值d,以向量形式存放d. ...
- 讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对 ...
- 强大的矩阵奇异值分解(SVD)及其应用
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 机器学习中的数学-矩阵奇异值分解(SVD)及其应用
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotE ...
- 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
随机推荐
- HttpClient -- 血的教训
HttpClient -- 血的教训 千万别用httpClient 不支持httpVersion2.0 因为这个导致项目重做
- Python 第三方模块安装出现的问题和解决方案.
出现此类问题 A) ImportError: cannot import name '_win32stdio'B) ImportError: No module named 'win32api' 需要 ...
- Generic method return type
Here's the Animal class: public class Animal{ private Map<String,Animal> friends =new HashMap& ...
- UI基础:UITableView的编辑和移动
相对UITableViiew进行编辑,必须设置代理,让代理遵循UITableViewDataSource和UITableViewDelegate协议.因为需要代理实现协议中几个必须的方法. UITab ...
- post&get请求总结
1.将get获取的数据,UrlDecode后返回 public static string SendGet(string url) { HttpWebRequest httpWebRequest = ...
- HDU 4160
http://acm.hdu.edu.cn/showproblem.php?pid=4160 大娃娃可以套在小娃娃外面(各边严格小),问最后最少得到几个娃娃 题目中的娃娃可以看做点,嵌套关系可以看做有 ...
- 解决在MainPage中,点击实体返回按键不能退出的问题
开发Windows Phone应用程序的时候,我在其它页面有写过这样的代码: private void btCancel_Click(object sender, EventArgs e) { Nav ...
- 数据库基本----SQL语句大全
学会数据库是很实用D~~记录一些常用的sql语句...有入门有提高有见都没见过的...好全...收藏下...其实一般用的就是查询,插入,删除等语句而已....但学学存储过程是好事...以后数据方面的东 ...
- 实现简单ThreadPool
在很多的应用场景,需要根据任务去创建线程去异步处理问题,不过不停的创建线程和销毁线程本身是一个非常耗时和消耗系统资源的事情,所以通常这种情况使用线程池来实现,常用的场景比如web容器对于web请求的处 ...
- timeZoneGetter
function timeZoneGetter(date) { // getTimezoneOffset 返回格林威治时间和本地时间之间的时差,以分钟为单位 var zone = -1 * date. ...