Distant Supervision for relation extraction without labeled data
Distant Supervision for relation extraction without labeled data
远程监督:使用未标注语料做关系抽取
1. 背景:
关系抽取(某个人是否属于某个组织等)
关系抽取中使用的3种方法:
a) 监督学习
优点:准确率很高
缺点:1.手工标注金标语料代价昂贵,时间金钱上需要很大的开销,并且数量受限,得不到大量的训练数据; 2.领域受限,标注都是在一个特定的语料中,训练的系统受限于那个领域
b) 无监督学习
优点:可以使用大规模的数据,抽取出大量的关系
缺点:抽取的结果往往比较难映射到特定的知识库
c) Bootstrap learning
往往有低准确率的问题。
d) 远程监督
使用知识库(freebase)来获取weekly labeled training data。
特点:相比监督学习,使用知识库提供训练数据来取代人工标注获取训练数据,没有过拟合的问题和领域依赖的问题;比起无监督,不用解决聚类结果到关系的映射问题,并且使用大规模的训练数据可以得到丰富的特征。
2. 方法介绍
基本假设: 如果两个实体是某个关系的参与者,任意的一个包含这两个实体的句子都可能表达了这个关系。
训练阶段
- 使用 NET(named entity tagger)标注 persons organizations 和 locations;
- 对在freebase中出现的实体对提取特征,构造训练数据;
- 训练多类别逻辑斯特回归模型。
测试阶段:
- 使用 NET(named entity tagger)标注 persons organizations 和 locations
- 在句子中出现的每对实体都被考虑做为一个潜在的关系实例,作为测试数据
- 使用训练后的模型对实体对分类。
3. 特征选择
3.1. 词汇特征:
a) 两个实体中间的词序列;
b) 这些词的词性标记;
c) 标志位表示哪个实体出现在前面;
d) 大小为k的左窗口;
e) 大小为k的右窗口。
3.2. 句法特征:
a) 两个实体之间的最短依存路径;
b) 两个实体的左右窗口。
3.3. 命名实体tag特征:
人名、地名、组织名和其他
4. 其他注意的地方
连接特征来丢进多类逻辑斯特回归模型。
负例构造:随机选取不在freebase中的实体对(有错误的可能)
训练和测试数据构造:freebase中的关系实例一半用来训练,另一半用来测试。数据使用维基百科数据,2:1的训练和测试数据分配。测试时只对在训练时未出现(不属于训练时的freebase中)的实例对分类。
测试结果选择:对所有实体对分类,并对每对实体对分配一个分类结果的置信度。然后对它们的置信度排序,选取top n。
Distant Supervision for relation extraction without labeled data的更多相关文章
- ACL2019: 《GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction》源码解析
论文地址:<GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction> G ...
- 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data
目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...
- Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子
转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...
- 关系抽取--Relation Extraction: Perspective from Convolutional Neural Networks
一种使用CNN来提取特征的模型,通过CNN的filter的大小来获得不同的n-gram的信息,模型的结构如下所示: 输入 输入使用word2vec的50维词向量,加上 position embeddi ...
- 研究NLP100篇必读的论文---已整理可直接下载
100篇必读的NLP论文 100 Must-Read NLP 自己汇总的论文集,已更新 链接:https://pan.baidu.com/s/16k2s2HYfrKHLBS5lxZIkuw 提取码:x ...
- 【DeepLearning】一些资料
记录下,有空研究. http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml http://nlp. ...
- 卷积神经网络CNN在自然语言处理中的应用
卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习在自然语言处理领域(Natural Language Process ...
- (转) Graph-powered Machine Learning at Google
Graph-powered Machine Learning at Google Thursday, October 06, 2016 Posted by Sujith Ravi, S ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
随机推荐
- Python标准库的学习准备
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Python标准库是Python强大的动力所在,我们已经在前文中有所介绍.由于标准 ...
- ICE安装
第一步,基于Windows下的安装,所以下载windows版的Ice: http://www.zeroc.com/download 第二步,安装Ice: 常规安装即可,可以选择安装目录,本 ...
- 反人类的MyEclipse之-MyEclipse代码自动补全
如果你用过Visual Studio的自动补全功能后,再来用eclipse的自动补全功能,相信大家会有些许失望. 但是eclipse其实是非常强大的,eclipse的自动补全没有VS那么好是因为ecl ...
- orientationchange不管用啊
首先引入JQuery Mobile包,将 <script> //手持设备方向改变时执行 $(window).bind( 'orientationchange', function(e){ ...
- 采用p6spy完整显示hibernate的SQL语句
虽然在hibernate中有show_sql选项,但是显示出来的语句大多类似 select * from xxx where value=? 但是有时候我们需要得到完整的SQL语句,怎么办呢?使用P6 ...
- MongoDB条件查询
1.查询集合中的所有记录 db.users.find() { "_id" : ObjectId("528b1173613e3289197a6486"), &qu ...
- OC基础(24)
NSMutableArray基本概念 NSDictionary基本概念 NSMutableDictionary基本概念 常见的结构体 *:first-child { margin-top: 0 !im ...
- Android 中获取 debug 测试 SHA1 和 release SHA1 证书指纹数据的方法
百度地图开发的时候要申请KEY,需要提供SHA1证书指纹数据 Eclipse eclipse中直接查看:windows -> preferance -> android -> bui ...
- windows下如何使用makefile编译
1. 编写makefile. 2. 使用nmake进行编译, vs2010或者其他都是用nmake进行编译的,将bin目录添加到path环境变量中 先执行vcvars32.bat 再执行nmake
- FPS学习记录
最近在网上查了一些FPS的相关知识,在此和大家一起分享.FPS(Frames Per Second):每秒传输帧数,它是图像领域中的一个术语. Frames Per Second更确切的解释是“每秒中 ...