基于keras的文本情感识别
流程描述
Keras文本情感分类基于机器学习算法,会根据大量数据训练出分类模型,然后使用训练好的模型对新来的数据进行分类。
该过程主要由训练流程和分类流程构成,这里以LSTM模型为例对文本情感分类进行描述。
训练流程
训练流程的输入是大量的已打标签文本数据,输出是最终的训练模型。
整体流程如下:
流程解释如下:
1、 评论数据分类
将原始评论数据进行分类,并打标签。该过程可以由多人同时进行,标签数据以最高得分为准(即少数服从多数)。
2、 数据预处理
计算机无法理解人类的自然语言,需要将人类的自然语言转换为计算机能理解的机器语言。该过程可以使用Word2Vec、jieba分词等工具实现,预处理的最终数据是词向量形式。
3、 模型训练过程
训练过程使用LSTM网络进行,数据经过嵌入层、LSTM层,最终到达输出层。不断重复以上过程至预期准确率。
4、 输出训练模型
当训练过程达到预期准确率时,终止训练过程,并将训练好的模型输出到文件。
分类流程
训练流程结束后,会输出最终的模型文件,分类过程需要预先加载该文件,将模型加载到内存,然后使用该模型对新输入的数据进行分类。
具体如下:
流程描述如下:
1、 启动程序,并加载模型;
2、 预处理文本数据,得到词向量数据;
3、 使用模型对词向量进行分类;
4、得到分类结果。
Keras安装
可参考:
https://www.cnblogs.com/MikeZhang/p/createKerasEnv-20210228.html
操作系统 : Ubuntu1804_x64
Python 版本 : 3.6.8
keras + tensorflow 环境搭建,使用cpu,安装命令如下:
virtualenv -p /usr/bin/python3.6 py36env source py36env/bin/activate pip install -r req.txt
req.txt 文件内容如下:


absl-py==0.7.1
astor==0.8.0
attrs==19.1.0
backcall==0.1.0
bleach==3.1.0
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
entrypoints==0.3
et-xmlfile==1.0.1
gast==0.2.2
google-pasta==0.1.7
graphviz==0.11.1
grpcio==1.22.0
h5py==2.9.0
interval==1.0.0
ipykernel==5.1.1
ipython==7.6.1
ipython-genutils==0.2.0
ipywidgets==7.5.0
jdcal==1.4.1
jedi==0.14.1
jieba==0.39
Jinja2==2.10.1
joblib==0.13.2
jsonschema==3.0.1
jupyter==1.0.0
jupyter-client==5.3.1
jupyter-console==6.0.0
jupyter-core==4.5.0
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
nbconvert==5.5.0
nbformat==4.4.0
notebook==6.0.0
numpy==1.16.2
openpyxl==2.6.2
pandas==0.24.2
pandocfilters==1.4.2
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==2.0.9
protobuf==3.9.0
ptyprocess==0.6.0
pydot==1.4.1
Pygments==2.4.2
pyparsing==2.4.0
pyrsistent==0.15.3
python-dateutil==2.8.0
pytz==2019.1
PyYAML==5.1.1
pyzmq==18.0.2
qtconsole==4.5.1
scikit-learn==0.21.2
scipy==1.3.0
Send2Trash==1.5.0
six==1.12.0
sklearn==0.0
tensorboard==1.14.0
tensorflow==1.14.0
tensorflow-estimator==1.14.0
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
traitlets==4.3.2
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.15.4
widgetsnbextension==3.5.0
wrapt==1.11.2
使用方法
1、 激活虚拟环境
source py36env/bin/activate
2、 准备数据
准备用于训练及测试的文本数据,可以直接使用百度情感分析的样本数据。
3、 启动训练程序
比如: python cnn_bdt1.py
启动使用cnn模型的训练及测试流程。
测试结果
分词的情况决定最终的测试结果,以下结果基于百度情感分析里面的样本数据:
算法 |
训练 |
测试 |
cnn |
99% |
87% |
lstm |
98% |
86% |
cnn_lstm |
99% |
89% |
fasttext |
95% |
83% |
测试代码
文件说明如下:
senta_data : 训练及测试数据
testResult.csv : 测试结果
cnn_test1.py : CNN示例代码
cnn_lstm_test1.py : CNN_LSTM示例代码
fasttext_test1.py : fasttext示例代码
lstm_test1.py : LSTM示例代码
1、cnn示例
fillArr(x_train,y_train,"senta_data/train.tsv")
fillArr(x_test,y_test,"senta_data/test.tsv")
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(max_features,embedding_dims,input_length=maxlen))
model.add(Dropout(0.2))
model.add(Conv1D(filters,kernel_size,padding='valid',activation='relu',strides=1))
model.add(GlobalMaxPooling1D())
model.add(Dense(hidden_dims))
model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
2、lstm示例
fillArr(x_train,y_train,"senta_data/train.tsv")
fillArr(x_test,y_test,"senta_data/test.tsv")
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(max_features, 128))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
3、cnn_lstm示例
fillArr(x_train,y_train,"senta_data/train.tsv")
fillArr(x_test,y_test,"senta_data/test.tsv")
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(Dropout(0.25))
model.add(Conv1D(filters,kernel_size,padding='valid',activation='relu',strides=1))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(LSTM(lstm_output_size))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
4、fasttext示例
fillArr(x_train,y_train,"senta_data/train.tsv")
fillArr(x_test,y_test,"senta_data/test.tsv") if ngram_range > 1:
ngram_set = set()
for input_list in x_train:
for i in range(2, ngram_range + 1):
set_of_ngram = create_ngram_set(input_list, ngram_value=i)
ngram_set.update(set_of_ngram)
start_index = max_features + 1
token_indice = {v: k + start_index for k, v in enumerate(ngram_set)}
indice_token = {token_indice[k]: k for k in token_indice}
max_features = np.max(list(indice_token.keys())) + 1
x_train = add_ngram(x_train, token_indice, ngram_range)
x_test = add_ngram(x_test, token_indice, ngram_range) x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(max_features,embedding_dims,input_length=maxlen))
model.add(GlobalAveragePooling1D())
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
本文涉及完整代码及资源下载地址:https://pan.baidu.com/s/182ZP5cBdA7QYk8lAj72mEA
可关注微信公众号(聊聊博文)后回复 2021033101 获得提取码。
基于keras的文本情感识别的更多相关文章
- 基于 Spark 的文本情感分析
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...
- NLP之基于TextCNN的文本情感分类
TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在 ...
- 基于Bert的文本情感分类
详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reaso ...
- 基于keras实现的中文实体识别
1.简介 NER(Named Entity Recognition,命名实体识别)又称作专名识别,是自然语言处理中常见的一项任务,使用的范围非常广.命名实体通常指的是文本中具有特别意义或者指代性非常强 ...
- NLP之基于Bi-LSTM和注意力机制的文本情感分类
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi ...
- LSTM 文本情感分析/序列分类 Keras
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_e ...
- pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...
- 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速
这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...
- BERT实战——基于Keras
1.keras_bert 和 kert4keras keras_bert 是 CyberZHG 大佬封装好了Keras版的Bert,可以直接调用官方发布的预训练权重. github:https://g ...
- 基于Deep Learning 的视频识别方法概览
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会 ...
随机推荐
- java进阶(21)--集合基础
一.基本概念 1.数组其实是一个集合,二集合是一个容器 2.集合不能直接存储基本数据类型,也不能存java对象,存储的是引用数据类型 list.add(100); //自动装箱Integer 3.ja ...
- Linux查看文件内容与处理文件
Linux查看文件内容与处理文件 目录 Linux查看文件内容与处理文件 查看文件内容 1.查看文件类型 2.查看整个文件 3.查看部分文件 处理文件 1.创建空文件 2.过滤文件内容 3.统计文件内 ...
- Chrome/Edge 设置黑色主题
Chrome chrome://flags/#enable-force-dark Edge edge://flags/#enable-force-dark
- Linux-用户组-groupad-groupdel-usermod
- [转帖]Oracle 23c 才支持 TLS1.3
Transport Layer Security 1.3 Protocol Now Supported in Oracle Database Starting with Oracle Database ...
- [转帖]使用 Dumpling 导出数据
16 Contributors 使用数据导出工具 Dumpling,你可以把存储在 TiDB 或 MySQL 中的数据导出为 SQL 或 CSV 格式,用于逻辑全量备份.Dumpling 也支持将 ...
- 人大金仓学习之一_kwr的简单学习
人大金仓学习之一_kwr的简单学习 摘要 周末在家想着学习一下数据库相关的内容. 网上找了不少资料, 想着直接在本地机器上面进行一下安装与验证 理论上linux上面应该更加简单. windows 上面 ...
- [转帖]20个常用的Linux工具命令
https://www.cnblogs.com/codelogs/p/16060113.html 简介# 网上有很多辅助开发的小工具,如base64,md5之类的,但这些小工具其实基本都可以用Linu ...
- github-keydb 知识
https://github.com/Snapchat/KeyDB KeyDB is now a part of Snap Inc! Check out the announcement here R ...
- awk的简单样例
shell awk求和 当第一列相同时,对应的第二列相加 awk'{sum[$1]+=$2}END{for(c in sum){print c,sum[c]}}'输入文件名 在Shell中,我们可以用 ...