深度学习(五)——DatadLoader的使用
一、DataLoader简介
官网地址:
1. DataLoder类
class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=None, persistent_workers=False, pin_memory_device='')
由此可见,DataLoder必须需要输入的参数只有\(dataset\)。
2. 参数说明
dataset(Dataset): 数据集的储存的路径位置等信息
batch_size(int): 每次取数据的数量,比如batchi_size=2,那么每次取2条数据
shuffle(bool): True: 打乱数据(可以理解为打牌中洗牌的过程); False: 不打乱。默认为False
num_workers(int): 加载数据的进程,多进程会更快。默认为0,即用主进程进行加载。但在windows系统下,num_workers如果非0,可能会出现 BrokenPipeError[Error 32] 错误
drop_last(bool): 比如我们从100条数据中每次取3条,到最后会余下1条,如果drop_last=True,那么这条数据会被舍弃(即只要前面99条数据);如果为False,则保留这条数据
二、DataLoader实操
- 数据集仍然采用上一篇的CIFAR10数据集
1. DataLoader取数据的逻辑
首先import dataset,dataset会返回一个数据的img和target
然后import dataloder,并设置\(batch\_size\),比如\(batch\_size=4\),那么dataloder会获取这些数据:dataset[0]=img0, target0; dataset[1]=img1, target1; dataset[2]=img2, target2; dataset[3]=img3, target3. 并分别将其中的4个img和4个target进行打包,并返回打包好的imgs和targets
比如下面这串代码:
import torchvision
from torch.utils.data import DataLoader
#测试集,并将PIL数据转化为tensor类型
test_data=torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())
#batch_size=4:每次从test_data中取4个数据集并打包
test_loader=DataLoader(dataset=test_data, batch_size=4, shuffle=True, num_workers=0, drop_last=False)
这里的test_loader会取出test_data[0]、test_data[1]、test_data[2]、test_data[3]的img和target,并分别打包。返回两个参数:打包好的imgs,打包好的taregts
2. 如何取出DataLoader中打包好的img、target数据
(1)输出打包好的img、target
代码示例如下:
import torchvision
from torch.utils.data import DataLoader
#测试集,并将PIL数据转化为tensor类型
test_data=torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())
#batch_size=4:每次从test_data中取4个数据集并打包
test_loader=DataLoader(dataset=test_data, batch_size=4, shuffle=True, num_workers=0, drop_last=False)
#测试数据集中第一章图片及target
img, target=test_data[0]
print(img.shape)
print(target)
#取出test_loader中的图片
for data in test_loader:
imgs,targets = data
print(imgs.shape) #[Run] torch.Size([4, 3, 32, 32]) 4张图片打包,3通道,32×32
print(targets) #[Run] tensor([3, 5, 2, 7]) 4张图,每张图片对应的标签分别是3,5,2,7(某一次print的举例,每次print结果不太一样)
在11行处debug一下可以发现,test_loader中有个叫sampler的采样器,采取的是随机采样的方式,也就是说这batch_size=4时,每次抓取的4张图片都是随机抓取的。
(2)展示图片
用tensorboard就可以可视化了,具体操作改一下上面代码最后的for循环就好了
from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("dataloder")
step=0 #tensorboard步长参数
for data in test_loader:
imgs,targets = data
# print(imgs.shape) #[Run] torch.Size([4, 3, 32, 32]) 4张图片打包,3通道,32×32
# print(targets) #[Run] tensor([3, 5, 2, 7]) 4张图,每张图片对应的标签分别是3,5,2,7(某一次print的举例,每次print结果不太一样)
writer.add_images("test_data",imgs,step) #注意这里是add_images,不是add_image。因为这里是加入了64张图
step=step+1
writer.close()
(3)关于shuffle的理解
- 可以理解为一个for循环就是打一次牌,打完一轮牌后,若shuffle=False,那么下一轮每一步抓到的牌都会跟上一轮相同;如果shuffle=True,那么就会进行洗牌,打乱牌的顺序后,下一轮每一步跟上一轮的会有不同。
首先将shuffle设置为False:
test_loader=DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
然后对(2)的代码进行修改,运行代码:
for epoch in range(2): #假设打两次牌,我们来观察两次牌中间的洗牌情况
step = 0 # tensorboard步长参数
for data in test_loader:
imgs,targets = data
# print(imgs.shape) #[Run] torch.Size([4, 3, 32, 32]) 4张图片打包,3通道,32×32
# print(targets) #[Run] tensor([3, 5, 2, 7]) 4张图,每张图片对应的标签分别是3,5,2,7(某一次print的举例,每次print结果不太一样)
writer.add_images("Epoch: {}".format(epoch),imgs,step) #注意这里是add_images,不是add_image。因为这里是加入了64张图
step=step+1
writer.close()
结果显示,未洗牌时运行的结果是一样的:
- 将shuffle设置为True,再次运行,可以发现两次结果还是不一样的:
深度学习(五)——DatadLoader的使用的更多相关文章
- go微服务框架go-micro深度学习(五) stream 调用过程详解
上一篇写了一下rpc调用过程的实现方式,简单来说就是服务端把实现了接口的结构体对象进行反射,抽取方法,签名,保存,客户端调用的时候go-micro封请求数据,服务端接收到请求时,找到需要调用调 ...
- 深度学习菜鸟的信仰地︱Supervessel超能云服务器、深度学习环境全配置
并非广告~实在是太良心了,所以费时间给他们点赞一下~ SuperVessel云平台是IBM中国研究院和中国系统与技术中心基于POWER架构和OpenStack技术共同构建的, 支持开发者远程开发的免费 ...
- go微服务框架go-micro深度学习-目录
go微服务框架go-micro深度学习(一) 整体架构介绍 go微服务框架go-micro深度学习(二) 入门例子 go微服务框架go-micro深度学习(三) Registry服务的注册和发现 go ...
- 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...
- Deep Learning(深度学习)学习笔记整理系列之(五)
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...
- 深度学习课程笔记(十五)Recurrent Neural Network
深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Yout ...
- 深度学习课程笔记(五)Ensemble
深度学习课程笔记(五)Ensemble 2017.10.06 材料来自: 首先提到的是 Bagging 的方法: 我们可以利用这里的 Bagging 的方法,结合多个强分类器,来提升总的结果.例如: ...
- 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...
- UFLDL深度学习笔记 (五)自编码线性解码器
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...
- 深度学习论文翻译解析(五):Siamese Neural Networks for One-shot Image Recognition
论文标题:Siamese Neural Networks for One-shot Image Recognition 论文作者: Gregory Koch Richard Zemel Rusla ...
随机推荐
- Go语言网络编程: 模拟实现DNS服务器
环境: 两台虚拟机,不限系统 写在前面 DNS服务器是干什么的?DNS服务器(Domain Name Server,域名服务器)是进行域名和与之相对应的IP地址进行转换的服务器,保存了一张域名和与之相 ...
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- Midjourney:一步一步教你如何使用 AI 绘画 MJ
一步一步如何使用 Midjourney 教程:教学怎么用 MJ? 一.Midjourney(MJ)是什么? Midjourney是一款使用文字描述来生成高质量图像的AI绘画工具.这篇文章主要介绍了Mi ...
- FreeSWITCH对接vosk实现实时语音识别
环境:CentOS 7.6_x64 FreeSWITCH版本 :1.10.9 Python版本:3.9.2 一.背景描述 vosk是一个开源语音识别工具,可识别中文,之前介绍过python使用vosk ...
- 如何通过C#/VB.NET代码将PowerPoint转换为HTML
利用PowerPoint可以很方便的呈现多媒体信息,且信息形式多媒体化,表现力强.但难免在某些情况下我们会需要将PowerPoint转换为HTML格式.因为HTML文档能独立于各种操作系统平台(如Un ...
- C#处理医学影像(四):基于Stitcher算法拼接人体全景脊柱骨骼影像
在拍摄脊柱或胸片时,经常会遇到因设备高度不够需要分段拍摄的情况, 对于影像科诊断查阅影像时希望将分段影像合并成一张影像,有助于更直观的观察病灶, 以下图为例的两个分段影像: 我们使用Ope ...
- Prism Sample 17-BasicRegionNavigation
本例是基础的导航应用 在窗口中布局了2个按钮,一个区域 <DockPanel LastChildFill="True"> <StackPanel Orientat ...
- 2020-09-11:Hive的优化策略有哪些?
福哥答案2020-09-11: [Hive调优及优化的12种方式](https://zhuanlan.zhihu.com/p/80718835?utm_source=qq)1.请慎重使用COUNT(D ...
- 2020-11-12:java中as-if-serial语义和happen-before语义有什么区别?
福哥答案2020-11-12: as-if-serial语义单线程执行结果不被改变.happen-before语义正确同步的多线程执行结果不被改变.***这道题网上已经说烂了,就不必重复了.[happ ...
- HNU2019 Summer Training 3 E. Blurred Pictures
E. Blurred Pictures time limit per test 2 seconds memory limit per test 256 megabytes input standard ...