这题直接贪心显然不可行.

考虑树形dp,用 \(f_i\) 表示到 \(i\) 人后,以 \(i\) 为根的所有人安装完的最短时间.

对于一个节点 \(u\), 假设拜访子节点的顺序为 \(v_1,v_2,...,v_m\) ,那么得到转移方程.

\[f_u = max(f_v + \sum\limits_{j = 1}^{i - 1}sum_j)
\]

其中 \(sum_i\) 表示拜访完以 \(i\) 为根的子树的所有人所花的时间,即 \((siz_i -1) *2\)

拜访的顺序考虑贪心

对于两个相邻整数 \(i,j\)​ ,必须满足 \(f_j + \sum\limits_{k =1}^{j-1}sum_k<f_i+ \sum\limits_{k=1}^{i-1}sum_k+sum_j\)​

\(\to f_j+sum_i < f_i+sum_j\\\to f_j-sum_j<f_i-sum_i\)

所以只要将 \(f_i - sum_i\) 从大到小排序即可.

const int N = 5e5 + 10;
vector<int>e[N];
int f[N], a[N], g[N];
bool cmp(int x, int y) {return g[x] - f[x] > g[y] - f[y];}
void dfs(int u, int fa) {
for (int v : e[u]) {
if (v == fa)continue;
dfs(v, u);
}
sort(e[u].begin(), e[u].end(), cmp);
if (u != 1) g[u] = a[u];
for (int v : e[u]) {
if (v == fa)continue;
g[u] = max(g[u], g[v] + f[u] + 1);
f[u] += f[v] + 2;
}
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n; cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
for (int i = 1, x, y; i < n; ++i) {
cin >> x >> y;
e[x].push_back(y);
e[y].push_back(x);
}
dfs(1, 0);
cout << max(g[1], f[1] + a[1]);
}

P3574 [POI2014]FAR-FarmCraft (树形DP)的更多相关文章

  1. bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心

    题意: $mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子. $mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒 ...

  2. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  3. 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并

    题目大意 ​ 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) ​ \(1\leq n\leq 1 ...

  4. 【BZOJ3829】[Poi2014]FarmCraft 树形DP(贪心)

    [BZOJ3829][Poi2014]FarmCraft Description In a village called Byteville, there are   houses connected ...

  5. BZOJ3829[Poi2014]FarmCraft——树形DP+贪心

    题目描述 In a village called Byteville, there are   houses connected with N-1 roads. For each pair of ho ...

  6. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  7. [bzoj3872][Poi2014]Ant colony_树形dp

    Ant colony bzoj-3872 Poi-2014 题目大意:说不明白.....题目链接 注释:略. 想法:两个思路都行. 反正我们就是要求出每个叶子节点到根节点的每个路径权值积. 可以将边做 ...

  8. BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】

    题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...

  9. BZOJ3522 [Poi2014]Hotel 【树形dp】

    题目链接 BZOJ3522 题解 就是询问每个点来自不同子树离它等距的三个点的个数 数据支持\(O(n^2)\),可以对每个距离分开做 设\(f[i][j]\)表示\(i\)的子树中到\(i\)距离为 ...

  10. 树形DP水题系列(1):FAR-FarmCraft [POI2014][luogu P3574]

    题目 大意: 边权为1 使遍历树时到每个节点的时间加上点权的最大值最小 求这个最小的最大值 思路: 最优化问题 一眼树形DP 考虑状态设立 先直接以答案为状态 dp[u] 为遍历完以u为根的子树的答案 ...

随机推荐

  1. Linux驱动开发笔记(五):驱动连接用户层与内核层的文件操作集原理和Demo

    前言   驱动写好后,用户层使用系统函数调用操作相关驱动从而实现与系统内核的关联,本篇主要就是理解清楚驱动如何让用户编程来实现与内核的交互.   杂项设备文件操作集 cd /usr/src/linux ...

  2. 华为ar502H物联网边缘计算网关,在容器内控制/dev/do0开关命令

    执行以下命令进行开关do继电开关,可以听见电位器声音. echo -en  "\x01" > /dev/do0 echo -en  "\x00" > ...

  3. [ABC262G] LIS with Stack

    Problem Statement There is an empty sequence $X$ and an empty stack $S$. Also, you are given an inte ...

  4. JQuery_2

    1.动画:    1.三种方式显示和隐藏元素       1.默认方式       1.show([speed,[easing],[fn]])         1.参数:             1. ...

  5. UMP系统概述

    突出性能: 1.低成本,高性能    2.开源数据库 UMP在设计时要实现一下原则: 多租户:

  6. 10 个免费的 AI 图片生成工具分享

    原文: https://openaigptguide.com/ai-picture-generator/ 在人工智能(AI)图像生成技术的推动下,各类AI图片生成网站如雨后春笋般涌现,为我们的日常生活 ...

  7. MySQL 事务的基础知识

    事务的基础知识 1. 数据库事务概述 事务是数据库区别于文件系统的重要特性之一,当我们有了事务就会让数据库中的数据始终保持 一致性,同时我们还能通过事务的机制 恢复到某个时间地点的数据,这样可以保证已 ...

  8. 2024-01-03:用go语言,给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time, 分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有两名油漆匠, 一位需要 付费 的油漆匠

    2024-01-03:用go语言,给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time, 分别表示给 n 堵不同的墙刷油漆需要的开销和时间.你有两名油漆匠, 一位需要 付费 的油漆匠 ...

  9. 序列化性能测试:jdk和fastjson

    序列化性能测试:jdk和fastjson 我开发一个认证授权框架时,需要添加数据库存储token或者会话,于是想测试使用jdk的blob存储解析快还是存储string的json序列化解析快,从而选择他 ...

  10. 【Python】【OpenCV】OCR识别(二)——透视变换

    对于OCR技术在处理有角度有偏差的图像时是比较困难的,而水平的图像使用OCR识别准确度会高很多,因为文本通常是水平排列的,而OCR算法一般会假设文本是水平的. 针对上述情况,所以我们在处理有角度的图象 ...