机器学习(6)K近邻算法
k-近邻,通过离你最近的来判断你的类别
例子:
定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近的样本中大多数属于某一类别),则该样本属于这个类别
K近邻需要做标准化处理
例如:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
def knn():
'''
k近邻预测消费花费
:return:
'''
#读取数据
data=pd.read_csv('data.csv')
# print(data.info())
data=data[['age','ageg','num','cost']]
# print(data)
#对数据的处理
y=data[['cost']]
x=data.drop('cost',axis=1)
#划分训练集合测试集
x_train,x_text,y_train,y_text=train_test_split(x,y,test_size=0.25)
#标准化
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
x_text=ss.transform(x_text)
#训练和预测
y_train=y_train.astype(int)
kn=KNeighborsClassifier(n_neighbors=5)
kn.fit(x_train,y_train)
y_predict=kn.predict(x_text)
print('预测值',y_predict)
print("++" * 100)
x_text=np.array(x_text)
print('原本的测试值',x_text)
print('得分:',kn.score(x_text,y_text.astype(int)))
#训练,预测
kn=KNeighborsClassifier()
# data=data['id','']
#数据处理
#特征工程
if __name__ == '__main__':
knn()
机器学习(6)K近邻算法的更多相关文章
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- 机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...
- 机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- [机器学习] k近邻算法
算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
随机推荐
- java中接口,抽象类,具体类之间的关系
抽象类实现接口,具体类继承于抽象类
- Galaxy Project | 一些尝试与思考
很久都没有更新推文了,脑壳羞涩,快码不出字的节奏! 最近在尝试内部 Galaxy 一些新工具的开发和 Galaxy 核心版本的升级测试,发现一些问题,简单记录和聊一下吧. 一些尝试 对于在线的 web ...
- Hive执行计划之一文读懂Hive执行计划
目录 概述 1.hive执行计划的查看 2.学会查看Hive执行计划的基本信息 3.执行计划步骤操作过程 4.explain extended 概述 Hive的执行计划描述了一个hiveSQL语句的具 ...
- .NETCore项目在Windows下构建Docker镜像并本地导出分发到CentOS系统下
在Windows下使用Docker,我们选择Docker Desktop这个软件,非常方便. Docker Desktop介绍及安装 Docker Desktop是适用于Mac.Linux或Windo ...
- Health Kit 新版本功能解析,给你丰富运动体验!
华为运动健康服务(HUAWEI Health Kit)6.11.0版本新鲜出炉! 开放活力三环数据助力养成运动习惯,新增水肺潜水.户外探险数据开放-- 丰富运动体验,尽在Health Kit,一起来看 ...
- 手把手教你自定义自己SpringBoot Starter组件源码剖析
我们知道SpringBoot Starter也就是启动器.是SpringBoot组件化的一大优点.基于这个思想,基于这个思想SpringBoot 才变得非常强大,官方给我们提供很多开箱即用的启动器. ...
- 如何洞察 .NET程序 非托管句柄泄露
一:背景 1. 讲故事 很多朋友可能会有疑问,C# 是一门托管语言,怎么可能会有非托管句柄泄露呢? 其实一旦 C# 程序与 C++ 语言交互之后,往往就会被后者拖入非托管泥潭,让我们这些调试者被迫探究 ...
- Centos7 升级 Kubernetes(k8s) 集群
目录 一.系统环境 二.前言 三.Kubernetes(k8s) 集群升级简介 四.升级master主节点 4.1 升级kubeadm 4.2 升级各个组件 4.3 升级 kubelet 和 kube ...
- Java相关小知识_6_15
实体完整性要求每个表都有唯一标识符,每一个表中的主键字段不能为空或者重复的值. 参照完整性要求关系中不允许引用不存在的实体.设定相应的更新删除插入规则来更新参考表. Java语言使用的是Unicode ...
- Maven配置UTF8,JDK版本
<!-- 局部jdk配置,pom.xml中 --> <build> <plugins> <plugin> <groupId>org.apac ...