k-近邻,通过离你最近的来判断你的类别

例子:

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近的样本中大多数属于某一类别),则该样本属于这个类别

K近邻需要做标准化处理

例如:

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

def knn():
'''
k近邻预测消费花费
:return:
'''
#读取数据
data=pd.read_csv('data.csv')
# print(data.info())
data=data[['age','ageg','num','cost']]
# print(data)
#对数据的处理
y=data[['cost']]
x=data.drop('cost',axis=1)
#划分训练集合测试集

x_train,x_text,y_train,y_text=train_test_split(x,y,test_size=0.25)
#标准化
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
x_text=ss.transform(x_text)
#训练和预测
y_train=y_train.astype(int)
kn=KNeighborsClassifier(n_neighbors=5)
kn.fit(x_train,y_train)

y_predict=kn.predict(x_text)
print('预测值',y_predict)
print("++" * 100)
x_text=np.array(x_text)
print('原本的测试值',x_text)
print('得分:',kn.score(x_text,y_text.astype(int)))
#训练,预测

kn=KNeighborsClassifier()

# data=data['id','']
#数据处理

#特征工程
if __name__ == '__main__':
knn()


												

机器学习(6)K近邻算法的更多相关文章

  1. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  2. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  3. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  4. 机器学习之K近邻算法

    K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...

  5. 机器学习实战-k近邻算法

    写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...

  6. 【机器学习】K近邻算法——多分类问题

    给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...

  7. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  8. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  9. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

  10. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

随机推荐

  1. java中接口,抽象类,具体类之间的关系

    抽象类实现接口,具体类继承于抽象类

  2. Galaxy Project | 一些尝试与思考

    很久都没有更新推文了,脑壳羞涩,快码不出字的节奏! 最近在尝试内部 Galaxy 一些新工具的开发和 Galaxy 核心版本的升级测试,发现一些问题,简单记录和聊一下吧. 一些尝试 对于在线的 web ...

  3. Hive执行计划之一文读懂Hive执行计划

    目录 概述 1.hive执行计划的查看 2.学会查看Hive执行计划的基本信息 3.执行计划步骤操作过程 4.explain extended 概述 Hive的执行计划描述了一个hiveSQL语句的具 ...

  4. .NETCore项目在Windows下构建Docker镜像并本地导出分发到CentOS系统下

    在Windows下使用Docker,我们选择Docker Desktop这个软件,非常方便. Docker Desktop介绍及安装 Docker Desktop是适用于Mac.Linux或Windo ...

  5. Health Kit 新版本功能解析,给你丰富运动体验!

    华为运动健康服务(HUAWEI Health Kit)6.11.0版本新鲜出炉! 开放活力三环数据助力养成运动习惯,新增水肺潜水.户外探险数据开放-- 丰富运动体验,尽在Health Kit,一起来看 ...

  6. 手把手教你自定义自己SpringBoot Starter组件源码剖析

    我们知道SpringBoot Starter也就是启动器.是SpringBoot组件化的一大优点.基于这个思想,基于这个思想SpringBoot 才变得非常强大,官方给我们提供很多开箱即用的启动器. ...

  7. 如何洞察 .NET程序 非托管句柄泄露

    一:背景 1. 讲故事 很多朋友可能会有疑问,C# 是一门托管语言,怎么可能会有非托管句柄泄露呢? 其实一旦 C# 程序与 C++ 语言交互之后,往往就会被后者拖入非托管泥潭,让我们这些调试者被迫探究 ...

  8. Centos7 升级 Kubernetes(k8s) 集群

    目录 一.系统环境 二.前言 三.Kubernetes(k8s) 集群升级简介 四.升级master主节点 4.1 升级kubeadm 4.2 升级各个组件 4.3 升级 kubelet 和 kube ...

  9. Java相关小知识_6_15

    实体完整性要求每个表都有唯一标识符,每一个表中的主键字段不能为空或者重复的值. 参照完整性要求关系中不允许引用不存在的实体.设定相应的更新删除插入规则来更新参考表. Java语言使用的是Unicode ...

  10. Maven配置UTF8,JDK版本

    <!-- 局部jdk配置,pom.xml中 --> <build> <plugins> <plugin> <groupId>org.apac ...