算法学习笔记(46): 离散余弦变换(DCT)
前置知识:离散傅里叶变换
傅里叶变换在上文中更多的是 OI 中的理解以及应用。但是傅里叶变换奥秘还很多。
回顾 \(\omega_n\) 在傅里叶变换中的定义:\(e^{i \frac {2\pi} n}\),存在 \(\omega_n^n = 1\) 的性质。意味着离散傅里叶变换实际上是周期性的,这也变相的解释了为什么存在循环卷积的性质。
傅里叶级数
我们回顾什么是傅里叶级数。傅里叶断言,对于任何周期信号 \(x(t)\) 都可以表示为成谐波关系的虚指数信号的线性组合,即:
\]
虽然后来证明当 \(x(t)\) 满足狄里赫利条件时才成立……
周期信号 \(x(t)\) 满足存在一个正值 \(T\) 满足:
\]
最小的 \(T\) 称为基波周期,\(w_0 = \frac {2\pi} T\) 称为基波频率。
如果我们知道了一个 \(x(t)\) 该如何求 \(a_k\) 呢?
利用积分:
\]
将后面变形:
\]
注意到:
\]
中,存在:
T & k = n \\
0 & k \ne n
\end{cases}
\]
所以:
\]
DCT 变换与 DFT 的联系
DCT 实际上就是 DFT 的一种特殊形式。
在傅立叶级数的推导中:
T & k = n \\
0 & k \ne n
\end{cases}
\]
是非常有趣的。
这反映出了如果对一个周期为 \(T\),并且周期内是个奇函数的函数 \(\int_0^T\),结果一定 \(= 0\),反之不为 \(0\)。
那么我们考虑将一个一般的周期信号变成一个周期内的偶函数,这样和 \(\sin\) 这个奇函数相乘后还是奇函数,积分出来也就没了,从而使得 DFT 的虚部没了。
上面所说的连续的情况,但是实际上离散的情况也是一样。
考察 DFT 的式子:
\]
令 \(m = 2n\),使得 \(a_k = a_{m - k - 1}\),那么其 DFT:
\]
发现并不优美,考虑将幂平移 \(\frac k 2\):
b_k &= \sum_{i = 0}^{m - 1} a_i \omega^{ki + \frac k 2} \\
&= \sum_{i = 0}^{n - 1} a_i \left[ \left(\cos \frac {\pi k (i + \frac 12)} n + \cos \frac {- \pi k (i + \frac 12)} n \right) + i\left(\sin \frac {\pi k (i + \frac 12)} n + \sin \frac {- \pi k (i + \frac 12)} n \right) \right] \\
&= 2 \sum_{i = 0}^{n - 1} a_i \cos \frac {\pi k(i + \frac 12)} n
\end{aligned}
\]
中间是利用 \(e^{ix} = \cos x + i \sin x\) 展开推导而来。
发现虚部直接没了,这符合前面得出的结论。
然后我们成功的学会了 DCT。
IDCT
由于 DCT 本质上就是 DFT,所以 IDCT 本质上就是 IDFT。所以理解是简单的了。
算法学习笔记(46): 离散余弦变换(DCT)的更多相关文章
- 算法学习笔记(9): 中国剩余定理(CRT)以及其扩展(EXCRT)
扩展中国剩余定理 讲解扩展之前,我们先叙述一下普通的中国剩余定理 中国剩余定理 中国剩余定理通过一种非常精巧的构造求出了一个可行解 但是毕竟是构造,所以相对较复杂 \[\begin{cases} x ...
- C / C++算法学习笔记(8)-SHELL排序
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- Johnson算法学习笔记
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
- 算法学习笔记(5): 最近公共祖先(LCA)
最近公共祖先(LCA) 目录 最近公共祖先(LCA) 定义 求法 方法一:树上倍增 朴素算法 复杂度分析 方法二:dfs序与ST表 初始化与查询 复杂度分析 方法三:树链剖分 DFS序 性质 重链 重 ...
- 算法学习笔记(3): 倍增与ST算法
倍增 目录 倍增 查找 洛谷P2249 重点 变式练习 快速幂 ST表 扩展 - 运算 扩展 - 区间 变式答案 倍增,字面意思即"成倍增长" 他与二分十分类似,都是基于" ...
- Miller-Rabin 与 Pollard-Rho 算法学习笔记
前言 Miller-Rabin 算法用于判断一个数 \(p\) 是否是质数,若选定 \(w\) 个数进行判断,那么正确率约是 \(1-\frac{1}{4^w}\) ,时间复杂度为 \(O(\log ...
- 算法学习笔记(20): AC自动机
AC自动机 前置知识: 字典树:可以参考我的另一篇文章 算法学习笔记(15): Trie(字典树) KMP:可以参考 KMP - Ricky2007,但是不理解KMP算法并不会对这个算法的理解产生影响 ...
随机推荐
- IDEA操作MyBatis实现数据库增删改查
"感谢您阅读本篇博客!如果您觉得本文对您有所帮助或启发,请不吝点赞和分享给更多的朋友.您的支持是我持续创作的动力,也欢迎留言交流,让我们一起探讨技术,共同成长!谢谢!" 前置环境 ...
- 【Oracle】 管道函数pipelined function简单的使用
Oracle 管道函数pipelined function简单的使用 如果在函数(function)中加关键字 pipelined,就表明这是一个oracle管道函数,其返回值类型必为 集合,体现出来 ...
- 力扣59(java)-螺旋矩阵Ⅱ(中等)
题目: 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix . 输入:n = 3 输出:[[1,2,3],[8,9,4],[ ...
- 牛客网-SQL专项训练24
①下列选项关于游标的作用叙述正确的是(D) 解析: 游标是一种从包括多条数据记录的结果集中每次提取一条记录以便处理的机制,可以看做是查询结果的记录指针.游标与视图类似,也是基于基表的临时表对象,也能够 ...
- 安全同学讲Maven间接依赖场景的仲裁机制
简介: 去年的Log4j-core的安全问题,再次把供应链安全推向了高潮.在供应链安全的场景,蚂蚁集团在静态代码扫描平台-STC和资产威胁透视平台-哈勃这2款产品在联合合作下,优势互补,很好的解决了直 ...
- QUIC技术创新 让视频和图片分发再提速
简介:在1月12日的「阿里云CDN产品发布会-新一代传输协议QUIC让CDN更快一步」之上,阿里云技术专家淮叶分享了QUIC技术及其应用落地实践,内容包含:QUIC协议介绍.相比TCP有哪些优势.应 ...
- Apache Flink 在汽车之家的应用与实践
简介: 汽车之家如何基于 Flink 上线了 AutoStream 平台并持续打磨. 本文整理自汽车之家实时计算平台负责人邸星星在 Flink Forward Asia 2020 分享的议题< ...
- [Ethereum] 浅谈加密商品市场 OpenSea 与 opensea-js
OpenSea 是用于交易以太坊加密商品的网上商店,主要的商品是 ERC721.ERC1155 标准的 Token. 它的特色就在于,只需要一个部署好的智能合约,你就能在 OpenSea 提供的界面上 ...
- WPF 性能测试
本文收藏我给 WPF 做的性能测试.在你开始认为 WPF 的性能存在问题的时候,不妨来这篇博客里找找看我做过的测试.我记录的测试都是比较纯净的测试项目,没有业务逻辑的干扰,写法也正常,可以更加真实反映 ...
- WinForms 使用 Image 的 FromFile 方法加载文件和使用 Bitmap 有什么不同
本文来告诉大家使用 GDI+ 的 Image.FromFile 加载图片文件和使用创建 Bitmap 传入图片文件有什么不同 如使用下面代码加载图片 using var image = Image.F ...