Problem Statement

This is an interactive task (where your program interacts with the judge's program via Standard Input and Output).

You are given integers $N$, $L$, and $R$.

You play the following game against the judge:

There are $N$ cards numbered $1$ through $N$ on the table.

The players alternately perform the following operation:

  • choose an integer pair $(x, y)$ satisfying $1 \leq x \leq N$, $L \leq y \leq R$ such that all of the $y$ cards $x, x+1, \dots, x+y-1$ remain on the table, and remove cards $x, x+1, \dots, x+y-1$ from the table.

The first player to become unable to perform the operation loses, and the other player wins.

Choose whether to go first or second, and play the game against the judge to win.

Constraints

  • $1 \leq N \leq 2000$
  • $1 \leq L \leq R \leq N$
  • $N$, $L$, and $R$ are integers.

Input and Output

This is an interactive task (where your program interacts with the judge's program via Standard Input and Output).

Initially, receive $N$, $L$, and $R$, given from the input in the following format:

$N$ $L$ $R$

First, you choose whether to go first or second. Print First if you choose to go first, and Second if you choose to go second.

Then, the game immediately starts. If you choose to go first, the judge goes second, and vice versa. You are to interact with the judge via input and output until the game ends to win the game.

In your turn, print an integer pair $(x, y)$ that you choose in the operation in the following format. If there is no $(x, y)$ that you can choose, print $(x, y) = (0, 0)$ instead.

$x$ $y$

In the judge's turn, the judge print an integer pair $(a, b)$ in the following format:

$a$ $b$

Here, it is guaranteed that $(a, b)$ is of one of the following three kinds.

  • If $(a, b) = (0, 0)$: the judge is unable to perform the operation. In other words, you have won the game.
  • If $(a, b) = (-1, -1)$: you have chosen an illegal $(x, y)$ or printed $(0, 0)$. In other words, you have lost the game.
  • Otherwise: the judge has performed the operation with $(x,y) = (a,b)$. It is guaranteed that judge chooses valid $(x, y)$.

If the judge returns $(a,b)=(0,0)$ or $(a,b)=(-1,-1)$, the game has already ended. In that case, terminate the program immediately.

Notes

  • After each output, add a newline and then flush Standard Output. Otherwise, you may get a TLE verdict.
  • If an invalid output is printed during the interaction, or if the program terminates halfway, the verdict will be indeterminate. Especially, note that if a runtime error occurs during the execution of the program, you may get a WA or TLE verdict instead of a RE verdict.
  • Terminate the program immediately after the game ends. Otherwise, the verdict will be indeterminate.

Sample Interaction

The following is a sample interaction where $N = 6, L = 1$, and $R = 2$.

Input Output Description
6 1 2 Initially, you are given integers $N$, $L$, and $R$.
First You choose to go first and start the game.
2 1 $(x, y) = (2, 1)$ is chosen to remove card $2$.
3 2 $(x, y) = (3, 2)$ is chosen to remove cards $3, 4$.
6 1 $(x, y) = (6, 1)$ is chosen to remove card $6$.
5 1 $(x, y) = (5, 1)$ is chosen to remove card $5$.
1 1 $(x, y) = (1, 1)$ is chosen to remove card $1$.
0 0 The judge is unable to perform the operation, so you win.

首先先玩着试一下。假设 \(N=11,L=R=3\) 吧。\(0\) 表示未取,\(1\) 表示已取。

0 0 0 0 0 0 0 0 0 0 0

突然发现,如果我们第一步去了中间的部分,那么情况就会变成

0 0 0 0 1 1 1 0 0 0 0

然后此时左右情况对称,对手怎么取,我在另一个方向同样方式取。这样的话对手怎么做,我都有方法做出反映。此时先手必胜。

但是这种方法不能用在所有情况。比如 \(N=11,L=R=2\) 时就不能构造出两个对称的位置。但是这样可以解决所有 \(L\ne R\) 的情况。

我们现在只用研究 \(L=R\) 的情况了。这个时候可以用 SG 函数解决。

根据 SG 函数的定义,设 \(f_i\) 为有 \(i\) 个数时的 SG 函数,那么 \(f_i=\operatorname{mex}\limits_{j\le i-l}\{f_j\oplus f_{i-l-j}\}\)。如果 \(f_n\) 等于0,后手必胜。否则先手必胜。

若 \(f_n\ne 0\),可以先枚举每种方案,找到一种合法方案使得取完后 SG 函数为 0。而后面对手做出操作时,也一样找到一种方案使得 SG 函数为 \(0\)。这样一直维护,对手怎么操作我都有后续操作。所以肯定必胜。

SG 函数可以每次重算,不用想烦人的维护。反正瓶颈不在这。

#include<bits/stdc++.h>
const int N=2005;
int n,l,r,md,k,x,y,f[N],t[N],s[N],nxt[N],lst[N];
int main()
{
scanf("%d%d%d",&n,&l,&r);
if(l!=r)
{
if(n-l&1)
k=l+1;
else
k=l;
md=n+k>>1;
puts("First");
printf("%d %d\n",md-k+1,k);
fflush(stdout);
while(1)
{
scanf("%d%d",&x,&y);
if(!x)
break;
if(x<md)
printf("%d %d\n",x+md,y);
else
printf("%d %d\n",x-md,y);
fflush(stdout);
}
}
else
{
for(int i=l;i<=n;i++)
{
memset(s,0,sizeof(s));
for(int j=0;j<=i-l;j++)
s[f[j]^f[i-l-j]]=1;
for(int j=0;j>=0;j++)
if(!s[j])
f[i]=j,j=-5;
}
if(f[n])
{
puts("First");
for(int i=0;i<=n;i++)
{
if(!(f[i]^f[n-l-i]))
{
printf("%d %d\n",i+1,l);
for(int j=i+1;j<=i+l;j++)
t[j]=1;
i=n+1;
}
}
}
else
puts("Second");
t[n+1]=t[0]=1;
fflush(stdout);
while(1)
{
scanf("%d%d",&x,&y);
if(!x&&!y)
break;
k=0;
for(int i=x;i<=x+y-1;i++)
t[i]=1;
for(int i=n;i>=0;i--)
{
nxt[i]=nxt[i+1];
if(t[i+1])
nxt[i]=i+1;
if(t[i])
k^=f[nxt[i]-i-1];
}
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+t[i],lst[i]=lst[i-1];
if(t[i-1])
lst[i]=i-1;
}
for(int i=1;i+l-1<=n;i++)
{
if(s[i-1]==s[i+l-1])
{
if(!(k^f[nxt[i]-lst[i]-1]^f[nxt[i+l-1]-i-l]^f[i-lst[i]-1]))
{
// printf("%d %d\n",k^f[nxt[i]-lst[i]-1],f[nxt[i+l-1]-i-l]^f[i-lst[i]-1]);
printf("%d %d\n",i,l);
for(int j=i;j<i+l;j++)
t[j]=1;
break;
}
}
}
fflush(stdout);
}
}
}

[ABC278G] Generalized Subtraction Game的更多相关文章

  1. Analysis of Two-Channel Generalized Sidelobe Canceller (GSC) With Post-Filtering

    作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Co ...

  2. [LeetCode] Generalized Abbreviation 通用简写

    Write a function to generate the generalized abbreviations of a word. Example: Given word = "wo ...

  3. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

  4. LeetCode Generalized Abbreviation

    原题链接在这里:https://leetcode.com/problems/generalized-abbreviation/ 题目: Write a function to generate the ...

  5. PAT 解题报告 1050. String Subtraction (20)

    1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...

  6. [Locked] Generalized Abbreviation

    Write a function to generate the generalized abbreviations of a word. Example:Given word = "wor ...

  7. [ACM] ZOJ 3816 Generalized Palindromic Number (DFS,暴力枚举)

    Generalized Palindromic Number Time Limit: 2 Seconds      Memory Limit: 65536 KB A number that will ...

  8. Regression:Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 本文主要是线性回归模型,包括: ...

  9. [leetcode-592-Fraction Addition and Subtraction]

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  10. [LeetCode] Fraction Addition and Subtraction 分数加减法

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

随机推荐

  1. 【Hexo】配置主流搜索引擎收录流程记录

    目录 是否已经被收录 生成站点地图 提交站点地图 Google 注册 Search Console 验证网站所有权 提交站点地图 Bing 从 GSC 导入 手动添加网站 手动请求编入索引 参考资料 ...

  2. 微服务下使用maven做多环境配置

    分享技术,用心生活 前言:很多项目在开发,提测,上线时都会提前手动改一些配置文件来适应对应环境,麻烦不说了,而且也容易出错:生产环境的配置也容易暴露.基于此,我们基于spring cloud alib ...

  3. VulnStack - ATT&CK红队评估实战(四) Writeup

    VulnStack - ATT&CK红队评估实战(四) Writeup VulnStack(四)环境搭建 1.项目地址 http://vulnstack.qiyuanxuetang.net/v ...

  4. 【krpano】 ASP点赞插件

    简述 这是一个Asp版krpano点赞案例,运用asp+xml读写.存储数据,结合krpano代码实现的功能:现将案例上传网站供大家学习研究,希望对大家有所帮助. 功能 用户在网页可点赞后显示已点赞数 ...

  5. Python脚本批量造数据、跑定时任务协助测试

    批量造数据 连接Mysql的信息 1 import pymysql 2 # 数据库连接信息 3 # 多个库要有多个conn 4 conn = pymysql.connect( 5 host=" ...

  6. MySQL系列2:InnoDB存储引擎

    1. 架构回顾 上一篇我们讲解了MySQL的逻辑架构,重新回顾一下,用一张新的图来认识一下该架构. 整体架构分为service层与存储引擎层,请求交给连接池后,由后台线程处理,并将请求转发给SQL接口 ...

  7. Three.js中实现对InstanceMesh的碰撞检测

    1. 概述 之前的文章提到,在Three.js中使用InstanceMesh来实现性能优化,可以实现单个Mesh的拾取功能 那,能不能实现碰撞检测呢?肯定是可以的,不过Three.js中并没有直接的A ...

  8. 「にちじょう記録」MTIDnWtMOA

    Mistakes That I Don't Want to Make Once Again. // Caution // 差分 / 前缀和后注意询问区间端点有变化-- 不要考虑了右边界就不考虑左边界 ...

  9. 使用Vue3+elementPlus的Tree组件实现一个拖拽文件夹管理

    目录 1.前言 2.分析 3. 实现 4.踩坑 4.1.拖拽辅助线的坑 4.2.数据的坑 4.3.限制拖拽 4.4.样式调整 1.前言 最近在做一个文件夹管理的功能,要实现一个树状的文件夹面板.里面包 ...

  10. 10.0 探索API调试事件原理

    本章笔者将通过Windows平台下自带的调试API接口实现对特定进程的动态转存功能,首先简单介绍一下关于调试事件的相关信息,调试事件的建立需要依赖于DEBUG_EVENT这个特有的数据结构,该结构用于 ...