Problem Statement

This is an interactive task (where your program interacts with the judge's program via Standard Input and Output).

You are given integers $N$, $L$, and $R$.

You play the following game against the judge:

There are $N$ cards numbered $1$ through $N$ on the table.

The players alternately perform the following operation:

  • choose an integer pair $(x, y)$ satisfying $1 \leq x \leq N$, $L \leq y \leq R$ such that all of the $y$ cards $x, x+1, \dots, x+y-1$ remain on the table, and remove cards $x, x+1, \dots, x+y-1$ from the table.

The first player to become unable to perform the operation loses, and the other player wins.

Choose whether to go first or second, and play the game against the judge to win.

Constraints

  • $1 \leq N \leq 2000$
  • $1 \leq L \leq R \leq N$
  • $N$, $L$, and $R$ are integers.

Input and Output

This is an interactive task (where your program interacts with the judge's program via Standard Input and Output).

Initially, receive $N$, $L$, and $R$, given from the input in the following format:

$N$ $L$ $R$

First, you choose whether to go first or second. Print First if you choose to go first, and Second if you choose to go second.

Then, the game immediately starts. If you choose to go first, the judge goes second, and vice versa. You are to interact with the judge via input and output until the game ends to win the game.

In your turn, print an integer pair $(x, y)$ that you choose in the operation in the following format. If there is no $(x, y)$ that you can choose, print $(x, y) = (0, 0)$ instead.

$x$ $y$

In the judge's turn, the judge print an integer pair $(a, b)$ in the following format:

$a$ $b$

Here, it is guaranteed that $(a, b)$ is of one of the following three kinds.

  • If $(a, b) = (0, 0)$: the judge is unable to perform the operation. In other words, you have won the game.
  • If $(a, b) = (-1, -1)$: you have chosen an illegal $(x, y)$ or printed $(0, 0)$. In other words, you have lost the game.
  • Otherwise: the judge has performed the operation with $(x,y) = (a,b)$. It is guaranteed that judge chooses valid $(x, y)$.

If the judge returns $(a,b)=(0,0)$ or $(a,b)=(-1,-1)$, the game has already ended. In that case, terminate the program immediately.

Notes

  • After each output, add a newline and then flush Standard Output. Otherwise, you may get a TLE verdict.
  • If an invalid output is printed during the interaction, or if the program terminates halfway, the verdict will be indeterminate. Especially, note that if a runtime error occurs during the execution of the program, you may get a WA or TLE verdict instead of a RE verdict.
  • Terminate the program immediately after the game ends. Otherwise, the verdict will be indeterminate.

Sample Interaction

The following is a sample interaction where $N = 6, L = 1$, and $R = 2$.

Input Output Description
6 1 2 Initially, you are given integers $N$, $L$, and $R$.
First You choose to go first and start the game.
2 1 $(x, y) = (2, 1)$ is chosen to remove card $2$.
3 2 $(x, y) = (3, 2)$ is chosen to remove cards $3, 4$.
6 1 $(x, y) = (6, 1)$ is chosen to remove card $6$.
5 1 $(x, y) = (5, 1)$ is chosen to remove card $5$.
1 1 $(x, y) = (1, 1)$ is chosen to remove card $1$.
0 0 The judge is unable to perform the operation, so you win.

首先先玩着试一下。假设 \(N=11,L=R=3\) 吧。\(0\) 表示未取,\(1\) 表示已取。

0 0 0 0 0 0 0 0 0 0 0

突然发现,如果我们第一步去了中间的部分,那么情况就会变成

0 0 0 0 1 1 1 0 0 0 0

然后此时左右情况对称,对手怎么取,我在另一个方向同样方式取。这样的话对手怎么做,我都有方法做出反映。此时先手必胜。

但是这种方法不能用在所有情况。比如 \(N=11,L=R=2\) 时就不能构造出两个对称的位置。但是这样可以解决所有 \(L\ne R\) 的情况。

我们现在只用研究 \(L=R\) 的情况了。这个时候可以用 SG 函数解决。

根据 SG 函数的定义,设 \(f_i\) 为有 \(i\) 个数时的 SG 函数,那么 \(f_i=\operatorname{mex}\limits_{j\le i-l}\{f_j\oplus f_{i-l-j}\}\)。如果 \(f_n\) 等于0,后手必胜。否则先手必胜。

若 \(f_n\ne 0\),可以先枚举每种方案,找到一种合法方案使得取完后 SG 函数为 0。而后面对手做出操作时,也一样找到一种方案使得 SG 函数为 \(0\)。这样一直维护,对手怎么操作我都有后续操作。所以肯定必胜。

SG 函数可以每次重算,不用想烦人的维护。反正瓶颈不在这。

#include<bits/stdc++.h>
const int N=2005;
int n,l,r,md,k,x,y,f[N],t[N],s[N],nxt[N],lst[N];
int main()
{
scanf("%d%d%d",&n,&l,&r);
if(l!=r)
{
if(n-l&1)
k=l+1;
else
k=l;
md=n+k>>1;
puts("First");
printf("%d %d\n",md-k+1,k);
fflush(stdout);
while(1)
{
scanf("%d%d",&x,&y);
if(!x)
break;
if(x<md)
printf("%d %d\n",x+md,y);
else
printf("%d %d\n",x-md,y);
fflush(stdout);
}
}
else
{
for(int i=l;i<=n;i++)
{
memset(s,0,sizeof(s));
for(int j=0;j<=i-l;j++)
s[f[j]^f[i-l-j]]=1;
for(int j=0;j>=0;j++)
if(!s[j])
f[i]=j,j=-5;
}
if(f[n])
{
puts("First");
for(int i=0;i<=n;i++)
{
if(!(f[i]^f[n-l-i]))
{
printf("%d %d\n",i+1,l);
for(int j=i+1;j<=i+l;j++)
t[j]=1;
i=n+1;
}
}
}
else
puts("Second");
t[n+1]=t[0]=1;
fflush(stdout);
while(1)
{
scanf("%d%d",&x,&y);
if(!x&&!y)
break;
k=0;
for(int i=x;i<=x+y-1;i++)
t[i]=1;
for(int i=n;i>=0;i--)
{
nxt[i]=nxt[i+1];
if(t[i+1])
nxt[i]=i+1;
if(t[i])
k^=f[nxt[i]-i-1];
}
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+t[i],lst[i]=lst[i-1];
if(t[i-1])
lst[i]=i-1;
}
for(int i=1;i+l-1<=n;i++)
{
if(s[i-1]==s[i+l-1])
{
if(!(k^f[nxt[i]-lst[i]-1]^f[nxt[i+l-1]-i-l]^f[i-lst[i]-1]))
{
// printf("%d %d\n",k^f[nxt[i]-lst[i]-1],f[nxt[i+l-1]-i-l]^f[i-lst[i]-1]);
printf("%d %d\n",i,l);
for(int j=i;j<i+l;j++)
t[j]=1;
break;
}
}
}
fflush(stdout);
}
}
}

[ABC278G] Generalized Subtraction Game的更多相关文章

  1. Analysis of Two-Channel Generalized Sidelobe Canceller (GSC) With Post-Filtering

    作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Co ...

  2. [LeetCode] Generalized Abbreviation 通用简写

    Write a function to generate the generalized abbreviations of a word. Example: Given word = "wo ...

  3. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

  4. LeetCode Generalized Abbreviation

    原题链接在这里:https://leetcode.com/problems/generalized-abbreviation/ 题目: Write a function to generate the ...

  5. PAT 解题报告 1050. String Subtraction (20)

    1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...

  6. [Locked] Generalized Abbreviation

    Write a function to generate the generalized abbreviations of a word. Example:Given word = "wor ...

  7. [ACM] ZOJ 3816 Generalized Palindromic Number (DFS,暴力枚举)

    Generalized Palindromic Number Time Limit: 2 Seconds      Memory Limit: 65536 KB A number that will ...

  8. Regression:Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 本文主要是线性回归模型,包括: ...

  9. [leetcode-592-Fraction Addition and Subtraction]

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  10. [LeetCode] Fraction Addition and Subtraction 分数加减法

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

随机推荐

  1. 【技术积累】Java里的volatile关键字到底能干嘛?

    7.4 最害怕的一集 - volatile 7.4.1 最简单的一集 - volatile 语义 (难度 : ) 读 -> 读一个 volatile 必须从 主内存读 写 -> 写一个 v ...

  2. ETL之apache hop系列1-ETL概念与hop简介

    ETL 简单介绍 ETL概念 ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的 ...

  3. MySQL到SelectDB的实时同步策略

    随着数据分析在业务决策中变得日益重要,数据实时同步和分析成为企业提升竞争力的关键.MySQL 作为广泛使用的关系型数据库,其数据存储丰富,但无法满足大规模数据分析和高并发查询的需求.而 SelectD ...

  4. 代码检视的新姿势!在IDEA中得到沉浸式Code Review新体验

    大家好,好久不见,又见面了. 在消失的这段时间里,我做了件大事,见证了儿子的出生并陪伴其一天天的成长.停止更文的200多天里,还能得到小伙伴们持续的支持,让我备受鼓励.对一个技术人员而言,分享技术观点 ...

  5. Building-Mobile-Apps-with-Ionic-2中文翻译工作

    最近没啥工作量, 然后学完了这本书, 接着又茫然找不到该干啥, 所以想着何不翻译这个书呢. 这本书首先给我们普及了Ionic 2的基础知识, Ionic 2和Ionic 1有本质上的区别, Ionic ...

  6. Solution Set -「CF 1525」

    「CF 1525A」Potion-making Link. 显然. #include<bits/stdc++.h> typedef long long ll; template<ty ...

  7. JUC并发编程(1)—CompletableFuture详解

    @ 目录 CompletableFuture介绍 1.创建异步任务 2.CompletableFuture API ①. 获得结果和触发计算(get.getNow.join.complete) ②. ...

  8. 【Unity3D】UI Toolkit样式选择器

    1 前言 ​ UI Toolkit简介 中介绍了样式属性,UI Toolkit容器 和 UI Toolkit元素 中介绍了容器和元素,本文将介绍样式选择器(Selector),主要包含样式类选择器(C ...

  9. OpenResty入门之压测篇:压测工具界的 “悍马” wrk 审核中

    在上篇文章 每个后端都应该了解的 OpenResty 入门以及网关安全实战 中,我向大家介绍了 OpenResty 的入门使用是 WAF 防御实战,这篇文章将给大家继续介绍 OpenResty 入门之 ...

  10. 虹科干货 | 什么是Redis数据集成(RDI)?

    大量的应用程序.日益增长的用户规模.不断扩展的技术需求,以及对即时响应的持续追求.想想这些是否正是你在经历的.也许你尝试过自己构建工具来应对这些需求,但是大量的编码和集成工作使你焦头烂额.那你是否知道 ...