技术实践丨基于MindSpore框架Yolov3-darknet模型的篮球动作检测体验
摘要:通过对篮球动作的分类训练及识别检测实例的讲解和体验,使我们了解了Yolov3模型的原理、架构等基本知识,为日后的深入学习奠定了基础。

背靠全新的设计理念,华为云推出了 MindSpore深度学习实战营,帮助小白更快的上手高性能深度学习框架,快速训练ResNet-50,实现你的第一个手机App开发,学会智能新闻分类、篮球检测和「猜你喜欢」模型!
MindSpore深度学习实战营,通过 21天的合理课程安排,不仅提供目前大热的移动端部署介绍,还有紧跟时事的趣味实践,更有深度的底层开发讲解,让你从框架到算法到开发,都能一网打尽。
在MindSpore21天实战营的第四堂课,由王老师分享了Yolov3在图像分类、目标检测等方面的实现。通过对篮球动作的分类训练及识别检测实例的讲解和体验,了解了Yolov3模型的原理、架构等基本知识,为日后的深入学习奠定了基础。
本次体验同样基于ModelArts+OBS,基本的操作步骤不复赘述,可以参考之前的文章。作业也同样分为体验作业和进阶作业。
体验作业:输入篮球比赛图片,在ModelArts环境上完成模型推理流程。根据本课提供的代码和操作步骤,是比较容易实现的,在此也不复强调。
进阶作业:输入篮球比赛视频,在ModelArts环境上完成模型推理流程。具体实现步骤如下:
1、下载一段篮球比赛视频,格式最好是mp4、avi等常规格式。用专用播放器下载的特殊格式,还需要转换一下;另外就是考虑到数据量的问题,视频的时间也不宜超过1分钟。本次操作的视频转码mp4后,居然带着水印(试用版),不确定会不会影响后续的识别。

2、对视频进行切分为图片,格式为.jpg。根据本课提供的OpenCV代码,在本地测试成功后,放到ModelArts上调试却不成功,多次调试无果。
2.1本地操作的代码如下图:

2.2 帧率为25,按照10帧取1,共切分出116张图片,图片大小为1920*1080。执行过程如下图所示


2.3 将图片通过OBS-browser-plus上传到OBS桶Yolov3项目数据集路径中;
2.4 修改predit.py代码,使其适应于批量图片的推理,并上传Yolov3代码至OBS桶。

Ps:2.4.1 图片目录中需按名称顺序读取并处理;
2.4.2 要将detection = DetectionEngine(args)语句置于循环中,否则其导致上一张图的Bounding box的累加复用,导致预测结果错误。如下图所示极端状况:

2.5 将Yolov3代码上传OBS桶Yolov3代码目录,并设置启动predict.py;在输出图片遍历的打印信息后,图片的检测工作就完成了,并输出到设置的OBS输出目录中。ModelArts检测日志见下图:
Ps:需注意增加checkpoint_path的配置,做为推理使用的训练模型。具体设置过程参见进阶作业步骤。

2.6、将图片使用OBS-browser-plus下载到本地,使用代码将其合并为视频。同样,ModelArts尝试运行无果。本地运行代码如下:

合成操作打印信息如下图所示:

到此,进阶作业的过程基本完成。
后记:
1、 本次课程训练使用的3000张篮球比赛图片,是在ModelArts上使用图片标记完成的,这可以作为深入了解AI模型拓展的一个起点;
2、 本次课程提供了GPU版本的代码,ModelArts上未实现的可以尝试在GPU环境下自动完成图片的切分、检测及合并;
3、 本节课后老师又补充了Yolov4的代码,可以尝试体验相比Yolov3检测精度是否有所提升。此项目前正在处理报错中,尚未成文,等待后补,谢谢!
本文分享自华为云社区《基于MindSpore框架Yolov3-darknet模型的篮球动作检测体验》,原文作者:Dasming 。
技术实践丨基于MindSpore框架Yolov3-darknet模型的篮球动作检测体验的更多相关文章
- 基于MIndSpore框架的道路场景语义分割方法研究
基于MIndSpore框架的道路场景语义分割方法研究 概述 本文以华为最新国产深度学习框架Mindspore为基础,将城市道路下的实况图片解析作为任务背景,以复杂城市道路进行高精度的语义分割为任务目标 ...
- 技术实践丨React Native 项目 Web 端同构
摘要:尽管 React Native 已经进入开源的第 6 个年头,距离发布 1.0 版本依旧是遥遥无期."Learn once, write anywhere",完全不影响 Re ...
- MindInsight:一款基于MindSpore框架的训练可视化插件
技术背景 在深度学习或者其他参数优化领域中,对于结果的可视化以及中间网络结构的可视化,也是一个非常重要的工作.一个好的可视化工具,可以更加直观的展示计算结果,可以帮助人们更快的发掘大量的数据中最有用的 ...
- 【公开课】【阿里在线技术峰会】魏鹏:基于Java容器的多应用部署技术实践
对于公开课,可能目前用不上这些,但是往往能在以后想解决方案的时候帮助到我.以下是阿里对公开课的整理 摘要: 在首届阿里巴巴在线峰会上,阿里巴巴中间件技术部专家魏鹏为大家带来了题为<基于Java容 ...
- 王晶:华为云OCR文字识别服务技术实践、底层框架及应用场景 | AI ProCon 2019
演讲嘉宾 | 王晶(华为云人工智能高级算法工程师王晶) 出品 | AI科技大本营(ID:rgznai100) 近期,由 CSDN 主办的 2019 中国AI 开发者大会(AI ProCon 2019) ...
- 从游击队到正规军(三):基于Go的马蜂窝旅游网分布式IM系统技术实践
本文由马蜂窝技术团队电商交易基础平台研发工程师"Anti Walker"原创分享. 一.引言 即时通讯(IM)功能对于电商平台来说非常重要,特别是旅游电商. 从商品复杂性来看,一个 ...
- 快速开发框架,及库存管理系统,基于easyui框架和C#语言MVC、EntityFrameWork、T4模板技术。
快速开发框架,及库存管理系统,基于easyui框架和C#语言MVC.EntityFrameWork.T4模板技术. 产品界面如下图所示: 源码结构: 开放全部源码,如有需要请联系,QQ:1107141 ...
- 一款基于SSM框架技术的全栈Java web项目(已部署可直接体验)
概述 此项目基于SSM框架技术的Java Web项目,是全栈项目,涉及前端.后端.插件.上线部署等各个板块,项目所有的代码都是自己编码所得,每一步.部分都有清晰的注释,完全不用担心代码混乱,可以轻松. ...
- 花椒直播基于golang的中台技术实践
https://github.com/gopherchina/conference/blob/master/2019/2.7%20花椒直播基于golang的中台技术实践%20-%20周洋.pdf 花椒 ...
- 技术干货 | 基于MindSpore更好的理解Focal Loss
[本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...
随机推荐
- 聊聊Transform模型
摘自<BERT基础教程:Transformer大模型实战 > 概述 循环神经网络和长短期记忆网络已经广泛应用于时序任务,比如文本预测.机器翻译.文章生成等.然而,它们面临的一大问题就是如何 ...
- linux其他命令(查找,软链接,打包和压缩,软件安装)笔记
1,查找文件 * 是通配符,代表任意字符,0到多个. find 路径 -name "*.txt" : 查找在路径下所有以 .txt 结尾的文件. 2,软链接 (1)将桌面目 ...
- Util应用框架基础(五) - 异常处理
本节介绍Util应用框架如何处理系统错误. 概述 系统在运行过程中可能发生错误. 系统错误可以简单分为两类: 系统异常 系统本身出现的错误. 业务异常 不满足业务规则出现的错误. 如何处理系统异常 如 ...
- Kafka 集群如何实现数据同步?
哈喽大家好,我是咸鱼 最近这段时间比较忙,将近一周没更新文章,再不更新我那为数不多的粉丝量就要库库往下掉了 T﹏T 刚好最近在学 Kafka,于是决定写篇跟 Kafka 相关的文章(文中有不对的地方欢 ...
- 由后缀表达式题目:stoi atoi 函数新发现
洛谷上的题:有些·表示一个操作结束~假装没看到 1 #include<iostream> 2 #include<stack> 3 #include<string> ...
- C/C++ 运用VMI接口查询系统信息
Windows Management Instrumentation(WMI)是一种用于管理和监视Windows操作系统的框架.它为开发人员.系统管理员和自动化工具提供了一种标准的接口,通过这个接口, ...
- 阿里云服务器docker系统 BUG
阿里云服务器docker系统 BUG购买了阿里云新加坡区的轻量服务器,安装的是docker专用系统,故障现象:docker镜像下载后,docker网络不通,docker端口不通,网络一直不通,通过防火 ...
- markdown文字与图片对齐方式
markdown文字与图片对齐方式 一.图片文字左右对齐 //如图所示,左文字,右图片 <div align="center"> <table rules=&qu ...
- 0x04.信息收集
探针 被动:借助网上的一些接口查询或者网上已经获取到的,查看历史信息. 主动:使用工具,从本地流量出发,探测目标信息,会发送大量流量到对方服务器上. 谷歌语法 懒人语法:https://pentest ...
- C++ Qt开发:PushButton按钮组件
Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍QPushBu ...