莫队

基础莫队

本质是通过排序优化了普通尺取法的时间复杂度。

考虑如果某一列询问的右端点是递增的,那么我们更新答案的时候,右指针只会从左往右移动,那么i指针的移动次数是$O(n)$的。

当然,我们不可能让左右端点都单调来做到总体$O(n)$。

考虑对左端点进行分块。

莫队排序:

左端点按照分块的编号来排,如果分块编号不同的话编号较小的靠前,如果相同的话右端点小的在前。可以证明这样排完序的话时间复杂度可以做到$O(n \sqrt n)$。

这样我们把区间分成了$\sqrt n$块,每块的长度都是$\sqrt n$,在每一块内部,所有查询的右端点是递增的。

右指针:在每一块内部,右端点递增,所以右端点走的总数不会超过$n$(注意每一块内部放的是左端点,右端点是完全有可能超出这个块的范围的,因此这里为$n$),一共有$\sqrt n$块,所以右端点总共走的次数不会超过$n \sqrt n$。

左指针:先考虑每一次询问:

  1. 左指针在块内部移动,块的长度是$\sqrt n$,因此最多只会移动$\sqrt n$次。

  2. 左指针在相邻两块之间移动,最坏是从第一个块的左端点移动到第二个块的右端点,因此最坏移动$2 \sqrt n$次。

因为有q次询问,所以1是$q \sqrt n$,2是$2n$。

因为一共有$\sqrt n$个块,我们从前往后要跨过$\sqrt n - 1$次,每次最多是$2 \sqrt n$,所以时间复杂度是$2n$。

所以总时间复杂度为$O(q \sqrt n)$。

// 代码为统计一段区间上是否有不相同的数,没有输出yes
int n, q;
int a[N];
vector<array<int, 3>> v;
int cnt[210];
int ans[N];
int len; int get(int x) {
return x / len;
} void adds(int x, int &res) {
if (!cnt[x]) res ++;
cnt[x] ++;
} void del(int x, int &res) {
cnt[x] --;
if (!cnt[x]) res --;
} void solve() {
cin >> n >> q;
len = max(1, (int)sqrt((double)n * n / q));
for (int i = 1; i <= n; i ++) {
cin >> a[i];
a[i] += 100;
}
for (int i = 1; i <= q; i ++) {
int l, r;
cin >> l >> r;
v.push_back({i, l, r});
}
auto cmp = [&](array<int, 3> &a, array<int, 3> &b) {
int i = get(a[1]), j = get(b[1]);
if (i != j) return i < j;
return a[2] < b[2];
};
sort(v.begin(), v.end(), cmp);
// i是右指针,j是左指针
for (int k = 0, i = 0, j = 1, res = 0; k < q; k ++) {
int id = v[k][0], l = v[k][1], r = v[k][2];
while (i < r) adds(a[++ i], res);
while (i > r) del(a[i --], res);
while (j < l) del(a[j ++], res);
while (j > l) adds(a[-- j], res);
ans[id] = res;
}
for (int i = 1; i <= q; i ++)
if (ans[i] == 1) cout << "YES\n";
else cout << "NO\n";
}

莫队算法(基础莫队)小结(也做markdown测试)的更多相关文章

  1. hdu4638 莫队算法

    莫队算法基础题,题目看懂就能做出来 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  2. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  3. HDU 4358 莫队算法+dfs序+离散化

    Boring counting Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others)T ...

  4. CSU 1515 Sequence (莫队算法)

    题意:给n个数,m个询问.每个询问是一个区间,求区间内差的绝对值为1的数对数. 题解:先离散化,然后莫队算法.莫队是离线算法,先按按询问左端点排序,在按右端点排序. ps:第一次写莫队,表示挺简单的, ...

  5. XOR and Favorite Number(莫队算法+分块)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  6. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  7. HYSBZ - 2038 小Z的袜子 (莫队算法)

    A1206. 小Z的袜子 时间限制:1.0s   内存限制:512.0MB   总提交次数:744   AC次数:210   平均分:44.44 将本题分享到:        查看未格式化的试题    ...

  8. hdu 5145(莫队算法+逆元)

    NPY and girls Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

  10. XIN队算法

    XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...

随机推荐

  1. Java面试题【3】

    20)什么是线程安全? 含义:当多个线程访问某个方法时,不管你通过怎样的调用方式或者说这些线程如何交替的执行,我们在主程序中不需要去做任何的同步,这个类的结果行为都是我们设想的正确行为,那么我们就可以 ...

  2. #莫队,bitset#洛谷 3674 小清新人渣的本愿

    题目 分析 只要做到\(O(n\sqrt{n})\)的时间复杂度就可以了 考虑莫队,首先乘号就是枚举\(x\)的约数\(d\), 判断\(d\)和\(\frac{x}{d}\)是否同时出现, 再考虑差 ...

  3. 一文弄懂String的所有小秘密

    目录 简介 String是不可变的 传值还是传引用 substring() 导致的内存泄露 总结 简介 String是java中非常常用的一个对象类型.可以说java中使用最多的就是String了.那 ...

  4. MySQL 主从 AUTO_INCREMENT 不一致问题分析

    作者:vivo 互联网数据库团队 - Wei Haodong 本文介绍了 MySQL5.7 中常见的replace into 操作造成的主从auto_increment不一致现象,一旦触发了主从切换, ...

  5. Java List集合去重、过滤、分组、获取数据、求最值、合并、排序、跳数据和遍历

    前言 请各大网友尊重本人原创知识分享,谨记本人博客:南国以南i. 准备工作:现有一个User类.Student 类和Ticket类,加入相关依赖 @Data public class User { / ...

  6. 鸿蒙HarmonyOS实战-ArkUI组件(Navigation)

    一.Navigation Navigation组件通常作为页面的根容器,支持单页面.分栏和自适应三种显示模式.开发者可以使用Navigation组件提供的属性来设置页面的标题栏.工具栏.导航栏等. 在 ...

  7. 重新整理数据结构与算法(c#)——算法套路迪杰斯特拉算法[三十一]

    前言 迪杰斯特拉算法 是求最短路径方法的其中一种,这个有什么作用呢? 有一张图: 假设求G点到其他各点的最小路径. 是这样来的. 比如找到了和G点相连接所有点,ABED.这时候确定GA是一定是最短的, ...

  8. python中的赋值、浅拷贝、深拷贝的区别

    赋值: 可变类型:赋值前后id不会变,赋值后的数据会随源数据变化: 不可变类型:赋值前后id不会变,赋值后的数据不会随源数据变化: 浅拷贝(copy): 可变类型:copy前后id会变,可变类型中存储 ...

  9. ES6中新增的Set、Map两种数据结构

    如果要用一句话来描述,我们可以说 Set是一种叫做集合的数据结构,Map是一种叫做字典的数据结构 什么是集合?什么又是字典? 集合是由一堆无序的.相关联的,且不重复的内存结构[数学中称为元素]组成的组 ...

  10. resin报错:java.lang.IllegalStateException: block Block

    java.lang.IllegalStateException: block Block 启动resin时报错 主要的提示信息就是下面这个 java.lang.IllegalStateExceptio ...