●BZOJ 2694 Lcm
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2694
题解:
莫比乌斯反演
不难看出,造成贡献的(i,j)满足gcd(i,j)无平方因子。
其实也就是$\mu(gcd(i,j))!=0$
先列出求ANS的式子
$\begin{align*}ANS&=\sum_{a=1}^{A}\sum_{b=1}^{B} lcm(a,b)\mu(gcd(a,b))^2\;(同样的,先枚举gcd的值g)\\&=\sum_{g=1}^{min(A,B)} \mu(g)^2\times g\sum_{d=1}^{min(\frac{A}{g},\frac{B}{g})}\mu(d) d^2 \times sum(\lfloor \frac{A}{gd} \rfloor)sum(\lfloor \frac{B}{gd} \rfloor)\\&(sum(x)=\frac{(1+n)n}{2})\end{align*}$
上式的$g\sum_{d=1}^{min(\frac{A}{g},\frac{B}{g})}\mu(d)d^2 \times sum(\lfloor \frac{A}{gd} \rfloor)sum(\lfloor \frac{B}{gd} \rfloor)$是求满足gcd(i,j)=g的lcm(i,j)之和,详见●BZOJ 2154 Crash的数字表格。
我们继续:
$\begin{align*}ANS&=\sum_{g=1}^{min(A,B)} \mu(g)^2\times g\sum_{d=1}^{min(\frac{A}{g},\frac{B}{g})}\mu(d) d^2 \times sum(\lfloor \frac{A}{gd} \rfloor)sum(\lfloor \frac{B}{gd} \rfloor)\\&=\sum_{D=gd=1}^{min(A,B)}sum(\lfloor \frac{A}{D} \rfloor)sum(\lfloor \frac{B}{D} \rfloor)\sum_{g|D}\mu(g)^2g\cdot\mu(\frac{D}{g})(\frac{D}{g})^2\end{align*}$
令$\begin{align*}w(D)=\sum_{g|D}\mu(g)^2g\cdot\mu(\frac{D}{g})(\frac{D}{g})^2\end{align*}$
现在,如果能够求出w(D),那么每个询问就可以在$O(\sqrt N)$里完成。
由于$y=\mu(x),y=x$是积性函数,那么由狄利克雷乘积的性质可知,
w(D)也是一个积性函数,所以线筛就可以求出w(D)。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 4000050
using namespace std;
const int mod=1<<30;
int w[MAXN];
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
w[1]=1;
for(int i=2,tmp,d;i<=4000000;i++){
if(!np[i]) prime[++pnt]=i,w[i]=(1ll*i-1ll*i*i%mod+mod)%mod;
for(int j=1;j<=pnt&&i<=4000000/prime[j];j++){
np[i*prime[j]]=1; tmp=i; d=prime[j];
while(tmp%prime[j]==0) tmp/=prime[j],d*=prime[j];
if(tmp!=1) w[tmp*d]=1ll*w[tmp]*w[d]%mod;
else if(1ll*d==1ll*prime[j]*prime[j]) w[d]=(-1ll*prime[j]*prime[j]%mod*prime[j]%mod+mod)%mod;
if(i%prime[j]==0) break;
}
}
for(int i=2;i<=4000000;i++) w[i]=(1ll*w[i]+w[i-1])%mod;
}
int sum(int n){
return 1ll*(1+n)*n/2%mod;
}
int main(){
Sieve();
int Case,n,m,mini,ans;
scanf("%d",&Case);
while(Case--){
scanf("%d%d",&n,&m);
mini=min(n,m); ans=0;
for(int D=1,last;D<=mini;D=last+1){
last=min(n/(n/D),m/(m/D));
ans=(1ll*ans+1ll*((w[last]-w[D-1]+mod)%mod)*sum(n/D)*sum(m/D))%mod;
}
printf("%d\n",ans);
} return 0;
}
●BZOJ 2694 Lcm的更多相关文章
- bzoj 2694: Lcm
2694: Lcm Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 422 Solved: 220[Submit][Status][Discuss] ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- BZOJ:4659&&BZOJ:2694: Lcm
Description 给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数 对(a,b),求其lcm(a,b)之和.答 ...
- BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- 【BZOJ】【2694】Lcm
数论/莫比乌斯反演/线性筛 题解:http://www.cnblogs.com/zyfzyf/p/4218176.html JZPTAB的加强版?感觉线性筛好像还是不怎么会啊……sad 题目记下来,回 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
随机推荐
- 201621123062《java程序设计》第11周作业总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 思维导图: 2. 书面作业 本次PTA作业题集多线程 2.1. 源代码阅读:多线程程序BounceThread 2 ...
- 关于from nltk.book import * 报错解决方法
import nltk nltk.download() 在使用上面命令安装了nltk库并运行下载后,再输入from nltk.book import * 往往会出现这样的错误提示: 出现这种错误往往是 ...
- Bate测试报告
1 测试中找出的bug Bug类型 总数 描述 修复的bug 10 1.注册成功并没有直接跳转到登录页面: 2.学校地区无限制,数字也可以: 3.虽然相同用户名不能注册,但是只是显示,注册失败,却没有 ...
- 多线程socket UDP收发数据
多线程socket收发数据 from threading import Thread from socket import * def sendData(): while True: sendInfo ...
- python 使用Nginx和uWSGI来运行Python应用
参考:http://zmrenwu.com/post/20/ uWSGI是一个Web应用服务器,它具有应用服务器,代理,进程管理及应用监控等功能.它支持WSGI协议,同时它也支持自有的uWSGI协议, ...
- DenseNet
特点: dense shortcut connections 结构: DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有 ...
- html{font-size:62.5%}
为什么要使用html,body{font-size:62.5%}? 使用以下代码查看浏览器的初始font-size: <!DOCTYPE html><html><head ...
- Nginx在windows环境下的安装与简单配置
版权声明:本文为博主原创文章,未经博主允许不得转载. 一. 下载并安装Nginx 去Nginx官网下载 我这里选取nginx/Windows-1.10.3版本,下载后解压出来即可,解压出来的路径不能含 ...
- LeetCode & Q13-Roman to Integer-Easy
Math String Description: Given a roman numeral, convert it to an integer. Input is guaranteed to be ...
- Spring Security 入门(1-3-5)Spring Security - remember me!
Remember-Me 功能 概述 Remember-Me 是指网站能够在 Session 之间记住登录用户的身份,具体来说就是我成功认证一次之后在一定的时间内我可以不用再输入用户名和密码进行登录了, ...