codefroces 612E Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].
This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.
The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.
The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.
If there is no permutation q such that q2 = p print the number "-1".
If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
struct ZYYS
{
int sum;
vector<int>p;
}s[];
int vis[],tot,a[],n,q[],ans[];
bool cmp(ZYYS a,ZYYS b)
{
return a.sum<b.sum;
}
int gi()
{
char ch=getchar();
int x=;
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x;
}
int dfs(int x,int cnt)
{
if (vis[x]) return cnt;
vis[x]=;
s[tot].p.push_back(x);
dfs(a[x],cnt+);
}
int main()
{int i,flag=,j;
cin>>n;
for (i=;i<=n;i++)
a[i]=gi();
for (i=;i<=n;i++)
if (vis[i]==)
{
s[++tot].sum=dfs(i,);
}
sort(s+,s+tot+,cmp);
for (i=;i<=tot;i++)
{
if (s[i].sum&) continue;
else
{
if (s[i+].sum==s[i].sum) {i++;continue;}
else {flag=;break;}
}
}
if (flag)
{
cout<<-<<endl;
return ;
}
for (i=;i<=tot;i++)
{
if (s[i].sum&)
{
for (j=;j<s[i].sum;j++)
{
q[(*j)%s[i].sum]=s[i].p[j];
}
for (j=;j<s[i].sum;j++)
ans[q[j]]=q[(j+)%s[i].sum];
}
else
{
for (j=;j<s[i].sum;j++)
{
ans[s[i].p[j]]=s[i+].p[j];
ans[s[i+].p[j]]=s[i].p[(j+)%s[i].sum];
}
i++;
}
}
for (i=;i<=n;i++)
printf("%d ",ans[i]);
}
codefroces 612E Square Root of Permutation的更多相关文章
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- [CF 612E]Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- Codeforces.612E.Square Root of Permutation(构造)
题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...
- Square Root of Permutation - CF612E
Description A permutation of length n is an array containing each integer from 1 to n exactly once. ...
- CF612E Square Root of Permutation
题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
随机推荐
- Struts2——第一个helloworld页面
struts2是一个较为成熟的mvc框架,先看看怎么配置struts2并且产生helloworld页面. 首先从官网下载struts2,http://struts.apache.org/downloa ...
- Beta冲刺Day7
项目进展 李明皇 今天解决的进度 部分数据传递和使用逻辑测试 林翔 今天解决的进度 服务器端查看个人发布的action,修改已发布消息状态的action,仍在尝试使用第三方云存储功能保存图片 孙敏铭 ...
- PYTHON 词云
#!/usr/bin/env python # -*- coding:utf-8 -*- import matplotlib.pyplot as plt from wordcloud import W ...
- 根据HTML5的新方法 drag & drop 方法实现表格拖拽实例
上一次学习了html5的drag和drop方法,传送门 就自己写了个例子加深自己对drag和drop的理解.不过一开始不是很简单,遇到了不少问题.还好网络万能的,什么都能查到,总算完成了. 说明和详 ...
- $(function(){})和window.onload的区别
(1)$(function(){}):DOM节点创建 完成才执行 (2)window.onload:页面所有资源(JS/CSS)加载完成才执行
- 分布式系统之消息中间件rabbitmq
分布式系统之消息中间件rabbitmq 博客分类: 感谢: 一般php 用rabbitmq java 用activemq http://spartan1.iteye.com/blog/11802 ...
- Sudoku 第一步
看到这个问题的思路是先解决生成数独生成器的编写,然后再解决数独求解的问题.最开始第一想法就是暴力求解,仔细算一下复杂度,发现这肯定耗时很久,于是看了很多博客(见转载).我们用回溯搜出来正解.
- PHP模式设计之单例模式、工厂模式、注册树模式、适配器模式、观察者模式
php模式设计之单例模式 什么是单例模式? 单例模式是指在整个应用中只有一个实例对象的设计模式 为什么要用单例模式? php经常要链接数据库,如果在一个项目中频繁建立连接数据库,会造成服务器资源的很大 ...
- VMware虚拟机,从厚置备改成精简置备,并减小硬盘的实际占用空间
工作中由于前期规划不足,导致磁盘空间分配较大,而且是厚置备.后期不再需要时,无法把用不到的空间释放出来,造成空间浪费.经过摸索和实验验证,总结出来一套方法. 风险提示:这个方法在我的环境中验证通过了, ...
- Trensient的使用介绍
1. transient的作用及使用方法 我们都知道一个对象只要实现了Serilizable接口,这个对象就可以被序列化,java的这种序列化模式为开发者提供了很多便利,我们可以不必关系具体序列化的过 ...