A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].

This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.

Input

The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.

The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.

Output

If there is no permutation q such that q2 = p print the number "-1".

If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.

Examples
Input
4
2 1 4 3
Output
3 4 2 1
Input
4
2 1 3 4
Output
-1
Input
5
2 3 4 5 1
Output
4 5 1 2 3
置换的整数幂有这样的结论:
T^k将长度为L的置换T分裂成gcd(L,K)份,每个循环分别是循环T中下标i mod gcd(l,k)=0,1,2…的元素的连接。
那么T^2分裂成gcd(L,2)分
也就是说,原置换平方后,偶数置换会分裂,奇数置换不变
开方运算实际上就是合并相同的置换
平方后的置换中偶数置换肯定是分裂后的结果,合并
奇数置换就不用合并
把循环求出来,排序
如果是偶数循环且没有长度相同的循环,那么说明无解,因为根本无法合并
注意奇数循环也要改变,因为奇数循环平方后顺序改变了
比如
1 4 2 5 3     ->1->4->2->5->3->
平方后就是
1 2 3 4 5     ->1->2->3->4->5->
给一张图直观理解(L=10,K=3)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
struct ZYYS
{
int sum;
vector<int>p;
}s[];
int vis[],tot,a[],n,q[],ans[];
bool cmp(ZYYS a,ZYYS b)
{
return a.sum<b.sum;
}
int gi()
{
char ch=getchar();
int x=;
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x;
}
int dfs(int x,int cnt)
{
if (vis[x]) return cnt;
vis[x]=;
s[tot].p.push_back(x);
dfs(a[x],cnt+);
}
int main()
{int i,flag=,j;
cin>>n;
for (i=;i<=n;i++)
a[i]=gi();
for (i=;i<=n;i++)
if (vis[i]==)
{
s[++tot].sum=dfs(i,);
}
sort(s+,s+tot+,cmp);
for (i=;i<=tot;i++)
{
if (s[i].sum&) continue;
else
{
if (s[i+].sum==s[i].sum) {i++;continue;}
else {flag=;break;}
}
}
if (flag)
{
cout<<-<<endl;
return ;
}
for (i=;i<=tot;i++)
{
if (s[i].sum&)
{
for (j=;j<s[i].sum;j++)
{
q[(*j)%s[i].sum]=s[i].p[j];
}
for (j=;j<s[i].sum;j++)
ans[q[j]]=q[(j+)%s[i].sum];
}
else
{
for (j=;j<s[i].sum;j++)
{
ans[s[i].p[j]]=s[i+].p[j];
ans[s[i+].p[j]]=s[i].p[(j+)%s[i].sum];
}
i++;
}
}
for (i=;i<=n;i++)
printf("%d ",ans[i]);
}

codefroces 612E Square Root of Permutation的更多相关文章

  1. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  2. [CF 612E]Square Root of Permutation

    A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...

  3. Codeforces.612E.Square Root of Permutation(构造)

    题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...

  4. Square Root of Permutation - CF612E

    Description A permutation of length n is an array containing each integer from 1 to n exactly once. ...

  5. CF612E Square Root of Permutation

    题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...

  6. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  8. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

随机推荐

  1. Java连接mysql——Establishing SSL connection without server's identity verification is not recommended.

    Establishing SSL connection without server's identity verification is not recommended. 出现这个错误的原因是因为m ...

  2. 四则运算----C++版

    一.设计思想 因java中已做过,就是简单的将java中的语句调换为C++的语句. 二.代码 #include<iostream.h> #include<Stdlib.h> v ...

  3. Scala 集合入门

    1. 数组 1.1 定长数组 scala.Array 是定长的可变的索引型集合, JVM 中, Scala 的 Array 是以 Java 数组方式实现. String 对应 java.lang.St ...

  4. java 零基础搭建dubbo运行环境

    一:简介    以前做项目时,分布式环境都是其它同事在搭建,自己也没参与分布式环境搭建,只负责开发,由于近段时间工作重心转到android,java后台有一段时间没有接触了,刚好这几天有空,决定自己动 ...

  5. php最新版本配置mysqli

    从官网上下载php后(我下的是php7.2.3版本),本想做个mysql的连接,但是无论怎么配置mysqli扩展,发现mysqli都没法用. 从百度上搜的那些方法都没法用,发现都是一些在php.ini ...

  6. JS 实现MVC的写法

    案例:当select 下拉选择框值变化时,显示其值(不是文本) 常规写法 <h3>JavaScript no MVC</h3>  <div>   <selec ...

  7. [52ABP实战课程系列]Docker&Ubuntu从入门到实战开课啦~

    任何的课程都逃不开理论的支持 久等了各位,在Asp.NET Core2.0 项目实战入门视频课程结束后,根据发起的投票信息.Docker 排在首位.按照结果,我们开始进行Docker视频课程的录制. ...

  8. python-3.x-基本数据类型

    当前学习版本为: python-3.6-4 代码: """整型 NUMBER""" a = 2 ** 5 b = a + 4 c = a / ...

  9. bugfree,CDbConnection 无法开启数据库连线: SQLSTATE[HY000] [2003] Can't connect to MySQL server on '192.168.0.99' (4)

    安装bugfree后,访问报错:CDbConnection 无法开启数据库连线: SQLSTATE[HY000] [2003] Can't connect to MySQL server on '19 ...

  10. float和position

    float float是欺骗父元素,让其父元素误以为其高度塌陷了,但float元素本身仍处于文档流中,文字会环绕着float元素,不会被遮蔽. absolute 但absolute其实已经不能算是欺骗 ...