【Luogu1273】有线电视网(动态规划)

题面

题目描述

某收费有线电视网计划转播一场重要的足球比赛。他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点。

从转播站到转播站以及从转播站到所有用户终端的信号传输费用都是已知的,一场转播的总费用等于传输信号的费用总和。

现在每个用户都准备了一笔费用想观看这场精彩的足球比赛,有线电视网有权决定给哪些用户提供信号而不给哪些用户提供信号。

写一个程序找出一个方案使得有线电视网在不亏本的情况下使观看转播的用户尽可能多。

输入输出格式

输入格式:

输入文件的第一行包含两个用空格隔开的整数N和M,其中2≤N≤3000,1≤M≤N-1,N为整个有线电视网的结点总数,M为用户终端的数量。

第一个转播站即树的根结点编号为1,其他的转播站编号为2到N-M,用户终端编号为N-M+1到N。

接下来的N-M行每行表示—个转播站的数据,第i+1行表示第i个转播站的数据,其格式如下:

K A1 C1 A2 C2 … Ak Ck

K表示该转播站下接K个结点(转播站或用户),每个结点对应一对整数A与C,A表示结点编号,C表示从当前转播站传输信号到结点A的费用。最后一行依次表示所有用户为观看比赛而准备支付的钱数。

输出格式:

输出文件仅一行,包含一个整数,表示上述问题所要求的最大用户数。

输入输出样例

输入样例#1:

5 3

2 2 2 5 3

2 3 2 4 3

3 4 2

输出样例#1:

2

题解

我还是太菜了。。。这种题都不会做。。。

设\(f[i][j]\)表示当前在\(i\)节点,选择了\(j\)个用户的最大获利

转移:

\(f[i][j]=max(f[i][k]+f[son][j-k]-W_{son})\)

其中,\(W_{son}\)是链接儿子节点的边权

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 3100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAX<<1];
int h[MAX],cnt=1;
int n,m,W[MAX];
int dg[MAX];
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;dg[u]++;
}
int f[MAX][MAX];
int size[MAX];
void dfs(int u,int ff)
{
f[u][0]=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
dfs(v,u);
for(int k=size[u];k>=0;--k)
for(int j=size[v];j>=0;--j)
f[u][j+k]=max(f[u][j+k],f[u][k]+f[v][j]-e[i].w);
size[u]+=size[v];
}
if(W[u])
{
size[u]=1;
f[u][1]=W[u];
}
}
int main()
{
n=read();m=read();
memset(f,-63,sizeof(f));
for(int i=1;i<=n-m;++i)
{
int K=read();
while(K--)
{
int v=read(),w=read();
Add(i,v,w);Add(v,i,w);
}
}
for(int i=n-m+1;i<=n;++i)W[i]=read();
dfs(1,0);
int ans=0;
for(int i=m;i;--i)
if(f[1][i]>=0)
{
ans=i;
break;
}
printf("%d\n",ans);
return 0;
}

【Luogu1273】有线电视网(动态规划)的更多相关文章

  1. [Luogu1273] 有线电视网

    [Luogu1273] 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树 ...

  2. Luogu P1273 有线电视网(树形dp+背包)

    P1273 有线电视网 题面 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部 ...

  3. 洛谷 P1273 有线电视网

    2016-05-31 13:25:45 题目链接: 洛谷 P1273 有线电视网 题目大意: 在一棵给定的带权树上取尽量多的叶子节点,使得sigma(val[选择的叶子节点])-sigma(cost[ ...

  4. P1273 有线电视网

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  5. 洛谷 P1273 【有线电视网】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  6. P1273 有线电视网(树形dp)

    P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. ...

  7. 洛谷 P1273 有线电视网(树形背包)

    洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...

  8. 洛谷P1273 有线电视网 【树上分组背包】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  9. 洛谷P1273 有线电视网 (树上分组背包)

    洛谷P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节 ...

随机推荐

  1. 重写equals()和hashCode()

    什么时候需要重写equals()? 只有当一个实例等于它本身的时候,equals()才会返回true值.通俗地说,此时比较的是两个引用是否指向内存中的同一个对象,也可以称做是否实例相 等.而我们在使用 ...

  2. 制作U盘Win10 PE

    1.安装Windows ADK 下载地址 http://go.microsoft.com/fwlink/p/?LinkID=232339 2. 已管理员身份启动“部署和映像工具环境” 3.创建WinP ...

  3. 打通MySQL的操作权限

    打通MySQL的操作权限 前面已经总结了<XAMPP的配置与使用>,虽然可以直接通过GUI控制面板去启动MySQL服务,但是有些相关的操作则需要在Windows中的CMD命令窗口中去对My ...

  4. img alt与title的区别

    前端 alt是图片加载不出来时候,对图片的文本替代 title 是鼠标放在图片上时,对图片的进一步说明 seo 搜索引擎对图片意思的理解主要靠 alt

  5. 学习资料分享:Python能做什么?

    最近一直忙着研究学习Python,很久没更新博客了,整理了一些Python学习资料,和大家分享一下!每天更新一篇~ 一.Python 特点 1.易于学习:Python有相对较少的关键字,结构简单,和一 ...

  6. Java经典编程题50道之三十四

    输入3个数a,b,c,按大小顺序输出. public class Example34 {    public static void main(String[] args) {        sort ...

  7. Java经典编程题50道之十六

    输出九九乘法表. public class Example16 {    public static void main(String[] args) {        table(9);    } ...

  8. Yii2 场景

    下面给大家介绍一下 yii2.0 场景的使用. 现在在 post表里面有 title image content 三个的字段,当我创建一个 post 的时候,我想三个字段全部是必填项,但是你修改的时候 ...

  9. PHP的性能优化方法总结

    什么情况之下,会遇到PHP性能问题? 1:PHP语法使用不恰当. 2:使用PHP语言做了它不擅长的事情. 3:使用PHP语言连接的服务不给力. 4:PHP自身的短板(PHP自身做不了的事情). 5:我 ...

  10. SIFT解析(三)生成特征描述子

    以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征.下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点. 下面好好说说如何来描述这些 ...