1. vanish of gradient

RNN的error相对于某个时间点t的梯度为:

\(\frac{\partial E_t}{\partial W}=\sum_{k=1}^{t}\frac{\partial E_t}{\partial y_t}\frac{\partial y_t}{\partial h_i}\frac{\partial h_t}{\partial h_k}\frac{\partial h_k}{\partial W}\) (公式1),

其中\(h\)是hidden node的输出,\(y_t\)是网络在t时刻的output,\(W\)是hidden nodes 到hidden nodes的weight,而\(\frac{\partial h_t}{\partial h_k}\)是导数在时间段[k,t]上的链式展开,这段时间可能很长,会造成vanish或者explosion gradiant。将\(\frac{\partial h_t}{\partial h_k}\)沿时间展开:\(\frac{\partial h_t}{\partial h_k}=\prod_{j=k+1}^{t}\frac{\partial h_j}{\partial h_{j-1}}=\prod_{j=k+1}^{t}W^T \times diag [\frac{\partial\sigma(h_{j-1})}{\partial h_{j-1}}]\)。上式中的diag矩阵是个什么鬼?我来举个例子,你就明白了。假设现在要求解\(\frac{\partial h_5}{\partial h_4}\),回忆向前传播时\(h_5\)是怎么得到的:\(h_5=W\sigma(h_4)+W^{hx}x_4\),则\(\frac{\partial h_5}{\partial h_4}=W\frac{\partial \sigma(h_4)}{\partial h_4}\),注意到\(\sigma(h_4)\)和\(h_4\)都是向量(维度为D),所以\(\frac{\partial \sigma(h_4)}{\partial h_4}\)是Jacobian矩阵也即:\(\frac{\partial \sigma(h_4)}{\partial h_4}=\) \(\begin{bmatrix} \frac{\partial\sigma_1(h_{41})}{\partial h_{41}}&\cdots&\frac{\partial\sigma_1(h_{41})}{\partial h_{4D}} \\ \vdots&\cdots&\vdots \\ \frac{\partial\sigma_D(h_{4D})}{\partial h_{41}}&\cdots&\frac{\partial\sigma_D(h_{4D})}{\partial h_{4D}}\end{bmatrix}\),明显的,非对角线上的值都是0。这是因为sigmoid logistic function \(\sigma\)是element-wise的操作。

后面推导vanish或者explosion gradiant的过程就很简单了,我就不写了,请参考http://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf 中的公式(14)往后部分。

2. weight shared (tied) 时, the gradient of tied weight = sum of gradient of individual weights

举个例子你就明白了:假设有向前传播\(y=F[W_1f(W_2x)]\), 且weights \(W_1\) \(W_2\) tied, 现在要求gradient  \(\frac{\partial y}{\partial W}\)

办法一:

先求gradient \(\frac{\partial F[]}{\partial W_2} = F'[]f() \)

再求gradient \(\frac{\partial F[]}{\partial W_1} = F'[] (W_2f'()x) \)

将上两式相加后得,\(F'[]f()+F'[] (W_2f'()x)=F'[](f()+W_2f'()x)\)

假设weights \(W_1\) \(W_2\) tied,则上式=\(F'[](f()+Wf'()x) = \frac{\partial y}{\partial W} \)

办法二:

现在我们换个办法,在假设weights \(W_1\) \(W_2\) tied的基础上,直接求gradient

\(\frac{\partial y}{\partial W} =  F'[]( \frac{\partial Wf()}{\partial W} + W \frac{\partial f()}{\partial W} )  = F'[](f()+Wf'()x) \)

可见,两种方法的结果是一样的。所以,当权重共享时,关于权重的梯度=两个不同权重梯度的和。

3. LSTM & Gated Recurrent units 是如何避免vanish的?

To understand this, you will have to go through some math. The most accessible article wrt recurrent gradient problems IMHO is Pascanu's ICML2013 paper [1].

A summary: vanishing/exploding gradient comes from the repeated application of the recurrent weight matrix [2]. That the spectral radius of the recurrent weight matrix is bigger than 1 makes exploding gradients possible (it is a necessary condition), while a spectral radius smaller than 1 makes it vanish, which is a sufficient condition.

Now, if gradients vanish, that does not mean that all gradients vanish. Only some of them, gradient information local in time will still be present. That means, you might still have a non-zero gradient--but it will not contain long term information. That's because some gradient g + 0 is still g. (上文中公式1,因为是相加,所以有些为0,也不会引起全部为0)

If gradients explode, all of them do. That is because some gradient g + infinity is infinity.(上文中公式1,因为是相加,所以有些为无限大,会引起全部为无限大)

That is the reason why LSTM does not protect you from exploding gradients, since LSTM also uses a recurrent weight matrix(h(t) = o(t) ◦ tanh(c(t))?), not only internal state-to-state connections( c(t) = f (t) ◦ ˜c(t−1) +i(t) ◦ ˜c(t) h(t)). Successful LSTM applications typically use gradient clipping.

LSTM overcomes the vanishing gradient problem, though. That is because if you look at the derivative of the internal state at T to the internal state at T-1, there is no repeated weight application. The derivative actually is the value of the forget gate. And to avoid that this becomes zero, we need to initialise it properly in the beginning.

That makes it clear why the states can act as "a wormhole through time", because they can bridge long time lags and then (if the time is right) "re inject" it into the other parts of the net by opening the output gate.

[1] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks." arXiv preprint arXiv:1211.5063 (2012).

[2] It might "vanish" also due to saturating nonlinearities, but that is sth that can also happen in shallow nets and can be overcome with more careful weight initialisations.

 
 

ref: Recursive Deep Learning for Natural Language Processing and Computer Vision.pdf

      CS224D-3-note bp.pdf

未完待续。。。

RNN(Recurrent Neural Network)的几个难点的更多相关文章

  1. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  3. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  4. Recurrent neural network (RNN) - Pytorch版

    import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # ...

  5. 4.5 RNN循环神经网络(recurrent neural network)

     自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  RNN循环神经网络 ...

  6. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  7. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  8. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  9. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  10. Recurrent Neural Network[Content]

    下面的RNN,LSTM,GRU模型图来自这里 简单的综述 1. RNN 图1.1 标准RNN模型的结构 2. BiRNN 3. LSTM 图3.1 LSTM模型的结构 4. Clockwork RNN ...

随机推荐

  1. 程序员的软实力武器-smart原则

    smart对于程序员来说不是仅仅意味一个法则: 面对需求和提出需求时候,smart原则可以极大的提高效率 目标管理是使管理者的工作由被动变为主动的一个很好的管理手段,实施目标管理不仅是为了利于员工更加 ...

  2. (十三)UITableView数据模型化

    多组数据的TableView的设计方法:每一组用一个模型对象表示. 模型包含了标题数据和行数据的数组,在控制器里包含模型的组来对各个模型进行初始化. 在tableView相应的方法中,从控制器的模型组 ...

  3. 说说nio----1

    既然说到了nio,就得谈以下几个问题 为什么会出现新io,"旧io"有什么问题吗? ok,一步一步来,先给大家看几个例子: 1单线程的服务器程序 import java.net.* ...

  4. 打开Visual Studio 2010,左下角显示正在从包...加载工具箱内容,卡住5、6秒!!!

    在VS2010命令提示符用 devenv /ResetSkipPkgs 或者 devenv /ResetSettings

  5. Android Notification 版本适配方案

    Notification 介绍见:https://developer.android.com/reference/android/app/Notification.html Android api 一 ...

  6. hive使用过的基本命令

    命令:完成操作 hive:进去hive show databases:显示 所有database use wizad: 使用database wizad,或者如use aso show tables: ...

  7. winform编程设定listview选中行

    在做项目中,需要用到listview显示数据.同时,项目要求,通过检索用户输入的数据,程序通过搜索,确定数据所在的行并通过程序设定为选中状态并高亮显示.同时,正常响应鼠标单击响应的效果,单击时,程序设 ...

  8. Leetcode_235_Lowest Common Ancestor of a Binary Search Tree

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/48392713 Given a binary search ...

  9. Java不走弯路教程(4.Client-Server模式(1)-Server)

    4.Client-Server模式(1)-Server 在上一章中,我们完成了MyDataBase.java的编写,类似于一个简单的数据库功能,提供了用户验证,查询操作. 在本章中,我们将继续扩展这个 ...

  10. 一种WPF在后台线程更新UI界面的简便方法

    WPF框架规定只有UI线程(主线程)可以更新界面,所有其他后台线程无法直接更新界面.幸好,WPF提供的SynchronizationContext类以及C#的Lambda表达式提供了一种方便的解决方法 ...