在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

输入:n*c*h*w

输出:n*c*h*w

常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。

1、Sigmoid

对每个输入数据,利用sigmoid函数执行操作。这种层设置比较简单,没有额外的参数。

层类型:Sigmoid

示例:

layer {
name: "encode1neuron"
bottom: "encode1"
top: "encode1neuron"
type: "Sigmoid"
}

2、ReLU / Rectified-Linear and Leaky-ReLU

ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。

标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0

f(x)=max(x,0)

层类型:ReLU

可选参数:

  negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope

layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}

RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。

3、TanH / Hyperbolic Tangent

利用双曲正切函数对数据进行变换。

层类型:TanH

layer {
name: "layer"
bottom: "in"
top: "out"
type: "TanH"
}

4、Absolute Value

求每个输入数据的绝对值。

f(x)=Abs(x)

层类型:AbsVal

layer {
name: "layer"
bottom: "in"
top: "out"
type: "AbsVal"
}

5、Power

对每个输入数据进行幂运算

f(x)= (shift + scale * x) ^ power

层类型:Power

可选参数:

  power: 默认为1

  scale: 默认为1

  shift: 默认为0

layer {
name: "layer"
bottom: "in"
top: "out"
type: "Power"
power_param {
power: 2
scale: 1
shift: 0
}
}

6、BNLL

binomial normal log likelihood的简称

f(x)=log(1 + exp(x))

层类型:BNLL

layer {
name: "layer"
bottom: "in"
top: "out"
type: “BNLL”
}

转 Caffe学习系列(4):激活层(Activiation Layers)及参数的更多相关文章

  1. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  2. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  4. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  5. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  6. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  7. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  8. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  9. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

  10. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

随机推荐

  1. Jquery实现弹出层效果

    <script type="text/javascript"> $(document).ready(function(){ $('.one').click(functi ...

  2. android Fragment的数据传递

    Bundle传递参数 Fragment1 fragment1 = new Fragment1();Bundle bundle = new Bundle();bundle.putString(" ...

  3. border-image用法详解

    图像边框 border-image使用方法:border-image:url('图像路径') 边距(不能带单位)/宽度 上下方式 左右方式:(四个边距,上右下左,相同时可缩写为一个)repeat平铺 ...

  4. mysql 出现Duplicate entry ‘xxx’ for key ‘PRIMARY’,一个自增字段达到了上限,

    mysql 出现Duplicate entry 'xxx' for key 'PRIMARY',一个自增字段达到了上限,

  5. HTML5与css3权威指南(一)

    doctype声明: <!DOCTYPE html> 字符编码: <meta charset="utf-8"> 不允许写结束标记:area,base,br. ...

  6. nginx配置文件中的location理解

    关于一些对location认识的误区 1. location 的匹配顺序是"先匹配正则,再匹配普通". 矫正: location 的匹配顺序其实是"先匹配普通,再匹配正则 ...

  7. 在nagios中监控windows主机系统地址的状态

    原来的[root@nhserver2_5 objects]# cd /usr/local/nagios/etc/objects[root@nhserver2_5 objects]# vim comma ...

  8. 【转】国外几款GPS卫星历预报软件

    以下是几款著名GPS厂商的星历软件: Trimble星历软件: http://www.trimble.com/planningsoftware.shtml Topcon星历软件: http://www ...

  9. 【视频编解码·学习笔记】4. H.264的码流封装格式

    一.码流封装格式简单介绍: H.264的语法元素进行编码后,生成的输出数据都封装为NAL Unit进行传递,多个NAL Unit的数据组合在一起形成总的输出码流.对于不同的应用场景,NAL规定了一种通 ...

  10. Jmeter之http性能测试实战 非GUI模式压测 NON-GUI模式 结果解析TPS——干货(十一)

    性能测试计划 性能测试用例 录制脚本 性能测试结果 性能测试报告 性能测试监控报告 准备工作 从脚本已录制成功之后开始进行压测 安装Jmeter拓展插件 查看 Transactions per Sec ...