传送门


一个人多段区间,一样....

不过国家队论文上说这道题好像不能保证整数解....

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e15,eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m;
double a[M][N];
int q[N];
void Pivot(int l,int e){
double t=a[l][e];a[l][e]=;
for(int j=;j<=n;j++) a[l][j]/=t;
int p=;
for(int j=;j<=n;j++) if(abs(a[l][j])>eps) q[++p]=j;
for(int i=;i<=m;i++) if(i!=l && abs(a[i][e])>eps){
double t=a[i][e];a[i][e]=;
for(int j=;j<=p;j++) a[i][q[j]]-=t*a[l][q[j]];
}
}
void simplex(){
while(true){
int l=,e=; double mn=INF;
for(int j=;j<=n;j++) if(a[][j]>eps) {e=j;break;}
if(!e) return;
for(int i=;i<=m;i++)
if(a[i][e]>eps && a[i][]/a[i][e]<mn) {mn=a[i][]/a[i][e];l=i;}
if(!l) return;//unbounded
Pivot(l,e);
}
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=n;i++)a[][i]=read();
for(int i=;i<=m;i++){
int k=read();
while(k--){
int l=read(),r=read();
for(int j=l;j<=r;j++) a[i][j]=;
}
a[i][]=read();
}
simplex();
printf("%d",int(-a[][]+0.5));
}

BZOJ 3265: 志愿者招募加强版 [单纯形法]的更多相关文章

  1. BZOJ 3265 志愿者招募加强版(单纯形)

    3265: 志愿者招募加强版 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 848  Solved: 436[Submit][Status][Disc ...

  2. BZOJ.3265.志愿者招募加强版(费用流SPFA)

    题目链接 见上题. 每类志愿者可能是若干段,不满足那个...全幺模矩阵(全单位模矩阵)的条件,所以线性规划可能存在非整数解. 于是就可以用费用流水过去顺便拿个rank2 233. //20704kb ...

  3. 【BZOJ1061/3265】[Noi2008]志愿者招募/志愿者招募加强版 单纯形法

    [BZOJ1061][Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募 ...

  4. BZOJ 3265 志愿者招募增强版 单

    标题效果:同1061 只是间隔为每种类型的志愿工作是多级 这是卡网络流量?未知 所有在所有的1061您将可以更改为在稍微改变- - #include <cmath> #include &l ...

  5. bzoj3265: 志愿者招募加强版(线性规划+单纯形法)

    传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...

  6. bzoj 1061 志愿者招募(最小费用最大流)

    [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3792  Solved: 2314[Submit][Status][Di ...

  7. bzoj 1061 志愿者招募 有上下界费用流做法

    把每一天看作一个点,每一天的志愿者数目就是流量限制,从i到i+1连边,上下界就是(A[i],+inf). 对于每一类志愿者,从T[i]+1到S[i]连边,费用为招募一个志愿者的费用,流量为inf.这样 ...

  8. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  9. BZOJ 1061 志愿者招募 最小费用流&&线性规划建模

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1061 题目大意: 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主 ...

随机推荐

  1. Dora.Interception, 一个为.NET Core度身打造的AOP框架:不一样的Interceptor定义方式

    相较于社区其他主流的AOP框架,Dora.Interception在Interceptor提供了完全不同的编程方式.我们并没有为Interceptor定义一个接口,正是因为不需要实现一个预定义的接口, ...

  2. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  3. Java排序算法分析与实现:快排、冒泡排序、选择排序、插入排序、归并排序(二)

    一.概述: 上篇博客介绍了常见简单算法:冒泡排序.选择排序和插入排序.本文介绍高级排序算法:快速排序和归并排序.在开始介绍算法之前,首先介绍高级算法所需要的基础知识:划分.递归,并顺带介绍二分查找算法 ...

  4. Tomcat学习笔记(二)—— 一个简单的Servlet容器

    1.简介:Servlet编程是通过javax.Servlet和javax.servlet.http这两个包的类和接口实现的,其中javax.servlet.Servlet接口至关重要,所有的Servl ...

  5. RSA关于加密长度限制的解决办法

    RSA关于加密长度限制的解决办法   因为rsa采用分块进行加密的,所以有长度限制.如果加密信息较多,可分段加解密(不建议对大量信息rsa加密,效率低效): 正常加密情形如下:      public ...

  6. HDU 1068 Girls and Boys(模板——二分图最大匹配)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1068 Problem Description the second year of the univ ...

  7. Hive 多分隔符的使用 (转载)

    方法一)通过org.apache.hadoop.hive.contrib.serde2.RegexSerDe格式的serde. 1) 建表语句 #指定以^|~作为分隔符 CREATE TABlE ta ...

  8. Schema与数据类型优化

    良好的逻辑设计和物理设计是高性能的基石,应该根据系统将要执行的查询数据来设计schema,这往往需要权衡各种因素. MySQL支持的数据类型非常多,选择正确的数据类型对于获得高性能至关重要. 更小的通 ...

  9. P1361 小M的作物

    P1361 小M的作物 题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第 ...

  10. Python--socketserve源码分析(二)

    BaseServer::self.process_request(request, client_address) 实现原理: 在类的继承关系中,当子类中没有相应的方法时就会去父类中寻找, 当继承多个 ...