Jetson TX1 install Opencv3
https://jkjung-avt.github.io/opencv3-on-tx2/
注意:在编译的时候会遇到内存空间不足的情况,可以插入U盘,将程序拷贝到U盘内编译,然后安装到Jetson上。U盘格式化采用NTFS,其他格式可能无法识别。
Installation Steps
I’d start by cleaning up older opencv packages and installing necessary dependencies for building opencv.
Regarding the python matplotlibrc modifications below, refer to this StackOverflow thread for more details.
### Remove all old opencv stuffs installed by JetPack (or OpenCV4Tegra)
$ sudo apt-get purge libopencv*
### I prefer using newer version of numpy (installed with pip), so
### I'd remove this python-numpy apt package as well
$ sudo apt-get purge python-numpy
### Remove other unused apt packages
$ sudo apt autoremove
### Upgrade all installed apt packages to the latest versions (optional)
$ sudo apt-get update
$ sudo apt-get dist-upgrade
### Update gcc apt package to the latest version (highly recommended)
$ sudo apt-get install --only-upgrade g++-5 cpp-5 gcc-5
### Install dependencies based on the Jetson Installing OpenCV Guide
$ sudo apt-get install build-essential make cmake cmake-curses-gui \
g++ libavformat-dev libavutil-dev \
libswscale-dev libv4l-dev libeigen3-dev \
libglew-dev libgtk2.0-dev
### Install dependencies for gstreamer stuffs
$ sudo apt-get install libdc1394-22-dev libxine2-dev \
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev
### Install additional dependencies according to the pyimageresearch
### article
$ sudo apt-get install libjpeg8-dev libjpeg-turbo8-dev libtiff5-dev \
libjasper-dev libpng12-dev libavcodec-dev
$ sudo apt-get install libxvidcore-dev libx264-dev libgtk-3-dev \
libatlas-base-dev gfortran
$ sudo apt-get install libopenblas-dev liblapack-dev liblapacke-dev
### Install Qt5 dependencies
$ sudo apt-get install qt5-default
### Install dependencies for python3
$ sudo apt-get install python3-dev python3-pip python3-tk
$ sudo pip3 install numpy
$ sudo pip3 install matplotlib
### Modify matplotlibrc (line #41) as 'backend : TkAgg'
$ sudo vim /usr/local/lib/python3.5/dist-packages/matplotlib/mpl-data/matplotlibrc
### Also install dependencies for python2
### Note that I install numpy with pip, so that I'd be using a newer
### version of numpy than the apt-get package
$ sudo apt-get install python-dev python-pip python-tk
$ sudo pip2 install numpy
$ sudo pip2 install matplotlib
### Modify matplotlibrc (line #41) as 'backend : TkAgg'
$ sudo vim /usr/local/lib/python2.7/dist-packages/matplotlib/mpl-data/matplotlibrc
Before downloading and building opencv-3.4.0, I’d first do some modifications according to this post, in order to fix OpenGL related compilation problems . More specifically, I’d modify /usr/local/cuda/include/cuda_gl_interop.h and fix the symbolic link of libGL.so.
$ sudo vim /usr/local/cuda/include/cuda_gl_interop.h
$ cd /usr/lib/aarch64-linux-gnu/
$ sudo ln -sf tegra/libGL.so libGL.so
Here’s how the relevant lines (line #62~68) of cuda_gl_interop.h look like after the modification.
//#if defined(__arm__) || defined(__aarch64__)
//#ifndef GL_VERSION
//#error Please include the appropriate gl headers before including cuda_gl_interop.h
//#endif
//#else
#include <GL/gl.h>
//#endif
Next, download opencv-3.4.0 source code, cmake and compile. Note that opencv_contrib modules (cnn/dnn stuffs) would cause problem on pycaffe, so after some experiments I decided not to include those modules at all.
### Download opencv-3.4.0 source code
$ mkdir -p ~/src
$ cd ~/src
$ wget https://github.com/opencv/opencv/archive/3.4.0.zip \
-O opencv-3.4.0.zip
$ unzip opencv-3.4.0.zip
### Build opencv (CUDA_ARCH_BIN="6.2" for TX2, or "5.3" for TX1)
$ cd ~/src/opencv-3.4.0
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local \
-D WITH_CUDA=ON -D CUDA_ARCH_BIN="6.2" -D CUDA_ARCH_PTX="" \
-D WITH_CUBLAS=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON \
-D ENABLE_NEON=ON -D WITH_LIBV4L=ON -D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF -D BUILD_EXAMPLES=OFF \
-D WITH_QT=ON -D WITH_OPENGL=ON ..
$ make -j4
$ sudo make install
Just for reference, here’s the resulting opencv-3.4.0 cmake configuration for my Jetson TX2 system.
-- General configuration for OpenCV 3.4.0 =====================================
-- Version control: unknown
--
-- Platform:
-- Timestamp: 2018-01-29T07:58:45Z
-- Host: Linux 4.4.38-tegra aarch64
-- CMake: 3.5.1
-- CMake generator: Unix Makefiles
-- CMake build tool: /usr/bin/make
-- Configuration: RELEASE
--
-- CPU/HW features:
-- Baseline: NEON FP16
-- required: NEON
-- disabled: VFPV3
--
-- C/C++:
-- Built as dynamic libs?: YES
-- C++ Compiler: /usr/bin/c++ (ver 5.4.0)
-- C++ flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG -DNDEBUG
-- C++ flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -fvisibility-inlines-hidden -g -O0 -DDEBUG -D_DEBUG
-- C Compiler: /usr/bin/cc
-- C flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -DNDEBUG -DNDEBUG
-- C flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -g -O0 -DDEBUG -D_DEBUG
-- Linker flags (Release):
-- Linker flags (Debug):
-- ccache: NO
-- Precompiled headers: YES
-- Extra dependencies: dl m pthread rt /usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so cudart nppc nppial nppicc nppicom nppidei nppif nppig nppim nppist nppisu nppitc npps cublas cufft -L/usr/local/cuda-8.0/lib64
-- 3rdparty dependencies:
--
-- OpenCV modules:
-- To be built: calib3d core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev dnn features2d flann highgui imgcodecs imgproc ml objdetect photo python2 python3 python_bindings_generator shape stitching superres video videoio videostab
-- Disabled: js world
-- Disabled by dependency: -
-- Unavailable: java ts viz
-- Applications: apps
-- Documentation: NO
-- Non-free algorithms: NO
--
-- GUI:
-- QT: YES (ver 5.5.1)
-- QT OpenGL support: YES (Qt5::OpenGL 5.5.1)
-- GTK+: NO
-- OpenGL support: YES (/usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so)
-- VTK support: NO
--
-- Media I/O:
-- ZLib: /usr/lib/aarch64-linux-gnu/libz.so (ver 1.2.8)
-- JPEG: /usr/lib/aarch64-linux-gnu/libjpeg.so (ver )
-- WEBP: build (ver encoder: 0x020e)
-- PNG: /usr/lib/aarch64-linux-gnu/libpng.so (ver 1.2.54)
-- TIFF: /usr/lib/aarch64-linux-gnu/libtiff.so (ver 42 / 4.0.6)
-- JPEG 2000: /usr/lib/aarch64-linux-gnu/libjasper.so (ver 1.900.1)
-- OpenEXR: build (ver 1.7.1)
--
-- Video I/O:
-- DC1394: YES (ver 2.2.4)
-- FFMPEG: YES
-- avcodec: YES (ver 56.60.100)
-- avformat: YES (ver 56.40.101)
-- avutil: YES (ver 54.31.100)
-- swscale: YES (ver 3.1.101)
-- avresample: NO
-- GStreamer:
-- base: YES (ver 1.8.3)
-- video: YES (ver 1.8.3)
-- app: YES (ver 1.8.3)
-- riff: YES (ver 1.8.3)
-- pbutils: YES (ver 1.8.3)
-- libv4l/libv4l2: 1.10.0 / 1.10.0
-- v4l/v4l2: linux/videodev2.h
-- gPhoto2: NO
--
-- Parallel framework: pthreads
--
-- Trace: YES (built-in)
--
-- Other third-party libraries:
-- Lapack: NO
-- Eigen: YES (ver 3.2.92)
-- Custom HAL: YES (carotene (ver 0.0.1))
--
-- NVIDIA CUDA: YES (ver 8.0, CUFFT CUBLAS FAST_MATH)
-- NVIDIA GPU arch: 62
-- NVIDIA PTX archs:
--
-- OpenCL: YES (no extra features)
-- Include path: /home/nvidia/src/opencv-3.4.0/3rdparty/include/opencl/1.2
-- Link libraries: Dynamic load
--
-- Python 2:
-- Interpreter: /usr/bin/python2.7 (ver 2.7.12)
-- Libraries: /usr/lib/aarch64-linux-gnu/libpython2.7.so (ver 2.7.12)
-- numpy: /usr/local/lib/python2.7/dist-packages/numpy/core/include (ver 1.14.0)
-- packages path: lib/python2.7/dist-packages
--
-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.5.2)
-- Libraries: /usr/lib/aarch64-linux-gnu/libpython3.5m.so (ver 3.5.2)
-- numpy: /usr/local/lib/python3.5/dist-packages/numpy/core/include (ver 1.14.0)
-- packages path: lib/python3.5/dist-packages
--
-- Python (for build): /usr/bin/python2.7
--
-- Java:
-- ant: NO
-- JNI: NO
-- Java wrappers: NO
-- Java tests: NO
--
-- Matlab: NO
--
-- Install to: /usr/local
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/nvidia/src/opencv-3.4.0/build
To verify the installation:
$ ls /usr/local/lib/python3.5/dist-packages/cv2.*
/usr/local/lib/python3.5/dist-packages/cv2.cpython-35m-aarch64-linux-gnu.so
$ ls /usr/local/lib/python2.7/dist-packages/cv2.*
/use/local/lib/python2.7/dist-packages/cv2.so
$ python3 -c 'import cv2; print(cv2.__version__)'
3.4.0
$ python2 -c 'import cv2; print(cv2.__version__)'
3.4.0
Bonus:
Jetson TX1 install Opencv3的更多相关文章
- Jetson TX1 install py-faster-rcnn
Install py-faster-rcnn following the official version https://github.com/rbgirshick/py-faster-rcnn ...
- Jetson TX1使用usb camera采集图像 (1)
使用python实现 https://jkjung-avt.github.io/tx2-camera-with-python/ How to Capture and Display Camera Vi ...
- [转]Jetson TX1 开发教程(1)配置与刷机
开箱 Jetson TX1是英伟达公司新出的GPU开发板,拥有世界上先进的嵌入式视觉计算系统,提供高性能.新技术和极佳的开发平台.在进行配置和刷机工作之前,先来一张全家福: 可以看到,Jetson T ...
- Jetson TX1刷机
刷机流程 https://blog.csdn.net/c406495762/article/details/70786700 注意:教程中包含两步,首先安装Ubuntu系统,然后重启安装程序,安装其他 ...
- Jetson tx1 安装ROS
注意,是 Jetson TX1 系统版本: R24.2 参考链接: https://www.youtube.com/watch?v=-So2P0kRYsk
- 【并行计算-CUDA开发】 NVIDIA Jetson TX1
概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...
- 基于英伟达Jetson TX1的GPU处理平台
基于英伟达Jetson TX1 GPU的HDMI图像输入的深度学习套件 [309] 本平台基于英伟达的Jetson TX1视觉计算的全功能开发板,配合本公司研发的HDMI输入图像采集板:Jetson ...
- NVIDIA Jetson™ TX1 Module
NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于NVIDIA Maxwell™ 架构,配有256个 NV ...
- NVIDIA Jetson™ TX1
NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于崭新 NVIDIA Maxwell™ 架构,配有256个 ...
随机推荐
- SpringBoot-MongoDB 索引冲突分析及解决
一.背景 spring-data-mongo 实现了基于 MongoDB 的 ORM-Mapping 能力, 通过一些简单的注解.Query封装以及工具类,就可以通过对象操作来实现集合.文档的增删改查 ...
- nginx系列10:通过upstream模块选择上游服务器和负载均衡策略round-robin
upstream模块的使用方法 1,使用upstream和server指令来选择上游服务器 这两个指令的语法如下图: 示例: 2,对上游服务使用keepalive长连接 负载均衡策略round-rob ...
- JQuery拖拽元素改变大小尺寸
<!DOCTYPE html><html> <head> <title></title> <style type="text ...
- webpack使用exclude
在进行项目打包的时候,当使用babel-loader进行js兼容时,不需要将node_modules模块下的所有js文件进行打包.
- axios 封装
来自:https://www.jianshu.com/p/68d81da4e1ad 侵删 import axios from 'axios' import qs from 'qs' let baseu ...
- new会返回NULL空指针吗
c++中的new会返回NULL空指针吗 https://stackoverflow.com/questions/3389420/will-new-operator-return-null On a s ...
- Rx响应式编程
RX响应式编程就是异步数据流编程:单击事件或事件总线;(观察者模式) 有一堆的函数能够创建流,也能将任何流-,也能将任何流进行组合和过滤.一个流能够作为另一个流的输入,能够将两个流合并,可以通过过滤流 ...
- Websocket-Sharp获取客户端IP地址和端口号
//OnOpen事件 protected override void OnOpen() { string IPAddress = base.Sessions.Sessions.First().Cont ...
- 使用Server Trigger保护重要的数据库对象
一 .Server Trigger的简单介绍 在SQL Server数据库中,Server Trigger 是一种特殊类型的存储过程,它可以对特定表.视图或存储中的必然事件自动响应,不由用户调用.创建 ...
- Swift中 删除Array的元素对象
Swift中Array的删除对象 在Swift中数组Array没有removeObject的方法 1.找到下标 let model_index = selectedArray.index(where: ...