https://jkjung-avt.github.io/opencv3-on-tx2/

注意:在编译的时候会遇到内存空间不足的情况,可以插入U盘,将程序拷贝到U盘内编译,然后安装到Jetson上。U盘格式化采用NTFS,其他格式可能无法识别。

Installation Steps

I’d start by cleaning up older opencv packages and installing necessary dependencies for building opencv.

Regarding the python matplotlibrc modifications below, refer to this StackOverflow thread for more details.

### Remove all old opencv stuffs installed by JetPack (or OpenCV4Tegra)
$ sudo apt-get purge libopencv*
### I prefer using newer version of numpy (installed with pip), so
### I'd remove this python-numpy apt package as well
$ sudo apt-get purge python-numpy
### Remove other unused apt packages
$ sudo apt autoremove
### Upgrade all installed apt packages to the latest versions (optional)
$ sudo apt-get update
$ sudo apt-get dist-upgrade
### Update gcc apt package to the latest version (highly recommended)
$ sudo apt-get install --only-upgrade g++-5 cpp-5 gcc-5
### Install dependencies based on the Jetson Installing OpenCV Guide
$ sudo apt-get install build-essential make cmake cmake-curses-gui \
g++ libavformat-dev libavutil-dev \
libswscale-dev libv4l-dev libeigen3-dev \
libglew-dev libgtk2.0-dev
### Install dependencies for gstreamer stuffs
$ sudo apt-get install libdc1394-22-dev libxine2-dev \
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev
### Install additional dependencies according to the pyimageresearch
### article
$ sudo apt-get install libjpeg8-dev libjpeg-turbo8-dev libtiff5-dev \
libjasper-dev libpng12-dev libavcodec-dev
$ sudo apt-get install libxvidcore-dev libx264-dev libgtk-3-dev \
libatlas-base-dev gfortran
$ sudo apt-get install libopenblas-dev liblapack-dev liblapacke-dev
### Install Qt5 dependencies
$ sudo apt-get install qt5-default
### Install dependencies for python3
$ sudo apt-get install python3-dev python3-pip python3-tk
$ sudo pip3 install numpy
$ sudo pip3 install matplotlib
### Modify matplotlibrc (line #41) as 'backend : TkAgg'
$ sudo vim /usr/local/lib/python3.5/dist-packages/matplotlib/mpl-data/matplotlibrc
### Also install dependencies for python2
### Note that I install numpy with pip, so that I'd be using a newer
### version of numpy than the apt-get package
$ sudo apt-get install python-dev python-pip python-tk
$ sudo pip2 install numpy
$ sudo pip2 install matplotlib
### Modify matplotlibrc (line #41) as 'backend : TkAgg'
$ sudo vim /usr/local/lib/python2.7/dist-packages/matplotlib/mpl-data/matplotlibrc

Before downloading and building opencv-3.4.0, I’d first do some modifications according to this post, in order to fix OpenGL related compilation problems . More specifically, I’d modify /usr/local/cuda/include/cuda_gl_interop.h and fix the symbolic link of libGL.so.

$ sudo vim /usr/local/cuda/include/cuda_gl_interop.h
$ cd /usr/lib/aarch64-linux-gnu/
$ sudo ln -sf tegra/libGL.so libGL.so

Here’s how the relevant lines (line #62~68) of cuda_gl_interop.h look like after the modification.

//#if defined(__arm__) || defined(__aarch64__)
//#ifndef GL_VERSION
//#error Please include the appropriate gl headers before including cuda_gl_interop.h
//#endif
//#else
#include <GL/gl.h>
//#endif

Next, download opencv-3.4.0 source code, cmake and compile. Note that opencv_contrib modules (cnn/dnn stuffs) would cause problem on pycaffe, so after some experiments I decided not to include those modules at all.

### Download opencv-3.4.0 source code
$ mkdir -p ~/src
$ cd ~/src
$ wget https://github.com/opencv/opencv/archive/3.4.0.zip \
-O opencv-3.4.0.zip
$ unzip opencv-3.4.0.zip
### Build opencv (CUDA_ARCH_BIN="6.2" for TX2, or "5.3" for TX1)
$ cd ~/src/opencv-3.4.0
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local \
-D WITH_CUDA=ON -D CUDA_ARCH_BIN="6.2" -D CUDA_ARCH_PTX="" \
-D WITH_CUBLAS=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON \
-D ENABLE_NEON=ON -D WITH_LIBV4L=ON -D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF -D BUILD_EXAMPLES=OFF \
-D WITH_QT=ON -D WITH_OPENGL=ON ..
$ make -j4
$ sudo make install

Just for reference, here’s the resulting opencv-3.4.0 cmake configuration for my Jetson TX2 system.

-- General configuration for OpenCV 3.4.0 =====================================
-- Version control: unknown
--
-- Platform:
-- Timestamp: 2018-01-29T07:58:45Z
-- Host: Linux 4.4.38-tegra aarch64
-- CMake: 3.5.1
-- CMake generator: Unix Makefiles
-- CMake build tool: /usr/bin/make
-- Configuration: RELEASE
--
-- CPU/HW features:
-- Baseline: NEON FP16
-- required: NEON
-- disabled: VFPV3
--
-- C/C++:
-- Built as dynamic libs?: YES
-- C++ Compiler: /usr/bin/c++ (ver 5.4.0)
-- C++ flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG -DNDEBUG
-- C++ flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -fvisibility-inlines-hidden -g -O0 -DDEBUG -D_DEBUG
-- C Compiler: /usr/bin/cc
-- C flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -DNDEBUG -DNDEBUG
-- C flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -g -O0 -DDEBUG -D_DEBUG
-- Linker flags (Release):
-- Linker flags (Debug):
-- ccache: NO
-- Precompiled headers: YES
-- Extra dependencies: dl m pthread rt /usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so cudart nppc nppial nppicc nppicom nppidei nppif nppig nppim nppist nppisu nppitc npps cublas cufft -L/usr/local/cuda-8.0/lib64
-- 3rdparty dependencies:
--
-- OpenCV modules:
-- To be built: calib3d core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev dnn features2d flann highgui imgcodecs imgproc ml objdetect photo python2 python3 python_bindings_generator shape stitching superres video videoio videostab
-- Disabled: js world
-- Disabled by dependency: -
-- Unavailable: java ts viz
-- Applications: apps
-- Documentation: NO
-- Non-free algorithms: NO
--
-- GUI:
-- QT: YES (ver 5.5.1)
-- QT OpenGL support: YES (Qt5::OpenGL 5.5.1)
-- GTK+: NO
-- OpenGL support: YES (/usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so)
-- VTK support: NO
--
-- Media I/O:
-- ZLib: /usr/lib/aarch64-linux-gnu/libz.so (ver 1.2.8)
-- JPEG: /usr/lib/aarch64-linux-gnu/libjpeg.so (ver )
-- WEBP: build (ver encoder: 0x020e)
-- PNG: /usr/lib/aarch64-linux-gnu/libpng.so (ver 1.2.54)
-- TIFF: /usr/lib/aarch64-linux-gnu/libtiff.so (ver 42 / 4.0.6)
-- JPEG 2000: /usr/lib/aarch64-linux-gnu/libjasper.so (ver 1.900.1)
-- OpenEXR: build (ver 1.7.1)
--
-- Video I/O:
-- DC1394: YES (ver 2.2.4)
-- FFMPEG: YES
-- avcodec: YES (ver 56.60.100)
-- avformat: YES (ver 56.40.101)
-- avutil: YES (ver 54.31.100)
-- swscale: YES (ver 3.1.101)
-- avresample: NO
-- GStreamer:
-- base: YES (ver 1.8.3)
-- video: YES (ver 1.8.3)
-- app: YES (ver 1.8.3)
-- riff: YES (ver 1.8.3)
-- pbutils: YES (ver 1.8.3)
-- libv4l/libv4l2: 1.10.0 / 1.10.0
-- v4l/v4l2: linux/videodev2.h
-- gPhoto2: NO
--
-- Parallel framework: pthreads
--
-- Trace: YES (built-in)
--
-- Other third-party libraries:
-- Lapack: NO
-- Eigen: YES (ver 3.2.92)
-- Custom HAL: YES (carotene (ver 0.0.1))
--
-- NVIDIA CUDA: YES (ver 8.0, CUFFT CUBLAS FAST_MATH)
-- NVIDIA GPU arch: 62
-- NVIDIA PTX archs:
--
-- OpenCL: YES (no extra features)
-- Include path: /home/nvidia/src/opencv-3.4.0/3rdparty/include/opencl/1.2
-- Link libraries: Dynamic load
--
-- Python 2:
-- Interpreter: /usr/bin/python2.7 (ver 2.7.12)
-- Libraries: /usr/lib/aarch64-linux-gnu/libpython2.7.so (ver 2.7.12)
-- numpy: /usr/local/lib/python2.7/dist-packages/numpy/core/include (ver 1.14.0)
-- packages path: lib/python2.7/dist-packages
--
-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.5.2)
-- Libraries: /usr/lib/aarch64-linux-gnu/libpython3.5m.so (ver 3.5.2)
-- numpy: /usr/local/lib/python3.5/dist-packages/numpy/core/include (ver 1.14.0)
-- packages path: lib/python3.5/dist-packages
--
-- Python (for build): /usr/bin/python2.7
--
-- Java:
-- ant: NO
-- JNI: NO
-- Java wrappers: NO
-- Java tests: NO
--
-- Matlab: NO
--
-- Install to: /usr/local
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/nvidia/src/opencv-3.4.0/build

To verify the installation:

$ ls /usr/local/lib/python3.5/dist-packages/cv2.*
/usr/local/lib/python3.5/dist-packages/cv2.cpython-35m-aarch64-linux-gnu.so
$ ls /usr/local/lib/python2.7/dist-packages/cv2.*
/use/local/lib/python2.7/dist-packages/cv2.so
$ python3 -c 'import cv2; print(cv2.__version__)'
3.4.0
$ python2 -c 'import cv2; print(cv2.__version__)'
3.4.0

Bonus:

Jetson TX1 install Opencv3的更多相关文章

  1. Jetson TX1 install py-faster-rcnn

    Install py-faster-rcnn following the official version  https://github.com/rbgirshick/py-faster-rcnn ...

  2. Jetson TX1使用usb camera采集图像 (1)

    使用python实现 https://jkjung-avt.github.io/tx2-camera-with-python/ How to Capture and Display Camera Vi ...

  3. [转]Jetson TX1 开发教程(1)配置与刷机

    开箱 Jetson TX1是英伟达公司新出的GPU开发板,拥有世界上先进的嵌入式视觉计算系统,提供高性能.新技术和极佳的开发平台.在进行配置和刷机工作之前,先来一张全家福: 可以看到,Jetson T ...

  4. Jetson TX1刷机

    刷机流程 https://blog.csdn.net/c406495762/article/details/70786700 注意:教程中包含两步,首先安装Ubuntu系统,然后重启安装程序,安装其他 ...

  5. Jetson tx1 安装ROS

    注意,是 Jetson TX1 系统版本: R24.2 参考链接: https://www.youtube.com/watch?v=-So2P0kRYsk

  6. 【并行计算-CUDA开发】 NVIDIA Jetson TX1

    概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...

  7. 基于英伟达Jetson TX1的GPU处理平台

    基于英伟达Jetson TX1 GPU的HDMI图像输入的深度学习套件 [309] 本平台基于英伟达的Jetson TX1视觉计算的全功能开发板,配合本公司研发的HDMI输入图像采集板:Jetson ...

  8. NVIDIA Jetson™ TX1 Module

    NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于NVIDIA Maxwell™ 架构,配有256个 NV ...

  9. NVIDIA Jetson™ TX1

    NVIDIA® Jetson TX1 是一台模块式计算机,代表了视觉计算领域近20年的研发成就,其尺寸仅有信用卡大小.Jetson TX1 基于崭新 NVIDIA Maxwell™ 架构,配有256个 ...

随机推荐

  1. 使用 EOLINKER 进行接口测试的最佳路径 (下)

    本文为 <使用 EOLINKER 进行接口测试的最佳路径> 下半部分文章,主要介绍测试脚本如何执行和报告生成,以及测试项目人员如何协作.还没看过上篇文章请戳 使用 EOLINKER 进行接 ...

  2. 搞懂MySQL分区

    一.InnoDB逻辑存储结构 首先要先介绍一下InnoDB逻辑存储结构和区的概念,它的所有数据都被逻辑地存放在表空间,表空间又由段,区,页组成. 段 段就是上图的segment区域,常见的段有数据段. ...

  3. (六) Keras 模型保存和RNN简单应用

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 RNN用于图 ...

  4. 数据结构:关键路径,利用DFS遍历每一条关键路径JAVA语言实现

    这是我们学校做的数据结构课设,要求分别输出关键路径,我查遍资料java版的只能找到关键路径,但是无法分别输出关键路径 c++有可以分别输出的,所以在明白思想后自己写了一个java版的 函数带有输入函数 ...

  5. Jenkins分布式部署配置

    为什要使用Jenkins分布式? 利用jenkins分布式来构建job,当job量足够大的时候,可以有效的缓解jenkins-master上的压力,提高并行job数量, 减少job处于pending状 ...

  6. jsp页面中include静态html出现乱码问题的解决方式

    这个问题出现过两次,上次没有做好记录,今天又出现了.不过这两次的情景也不完全一致. 今天通过搜索找到这篇文章的解决方式很好,可供参考.原博客地址http://blog.csdn.net/izgnaw/ ...

  7. SQL Server数据库漏洞评估了解一下

    SQL Server Management Studio 17.4或更高版本的SSMS中提供了SQL Server漏洞侦测(VA)功能,此功能允许SQL Server扫描您的数据库以查找潜在的安全漏洞 ...

  8. SQLServer创建用户登录

    创建用户登录注意事项 密码是区分大小写的. 只有创建SQL Server登录时,才支持对密码预先进行哈希运算. 如果指定MUST_CHANGE,则CHECK_EXPIRATION和 CHECK_POL ...

  9. Windows Server 2008远程桌面默认端口更改方法

    win2008远程桌面端口默认是用的是3389端口,但是由于安全考虑,经常我们安装好系统后一般都会考虑把原来的3389端口更改为另外的端口. 本文以改为端口为25608商品为例,讲解一下具体操作过程. ...

  10. web安全基础第一天

    编码:url编码 base64编码:末尾有俩个==号 md5加密:16位或者32位 1.whois查询  :站长邮箱,联系人,备案 旁站c段&子域名. ( 大数据平台和bing接口查询 :Zo ...