数据结构之---二叉树C实现
学过数据结构的都知道树,那么什么是树?
1、每个节点最多有两个子节点的树形结构
2、其中起始节点叫做根节点,除了根节点之外,每个节点有且只有一个父节点
3、没有任何子节点的节点 叫做叶子节点,除了叶子节点之外,每个节点都可以有两个子节点
4、除了根节点和叶子节点之外,剩下的节点叫枝节点,枝节点有父节点也有子节点
5、二叉树中每层节点均达到最大值,并且除了叶子节点之外每个节点都有两个子节点,叫做满二叉树
6、二叉树中除了最后一层之外,每层节点数均达到最大值,并且最后一层的节点连续集中在左边,叫完全二叉树
对于二叉树的处理采用递归的方法:
处理(二叉树)
{
if(二叉树为空) 直接处理;
else
{
处理根节点;
处理左子树;=> 递归
处理右子树;=> 递归
}
}
二叉树的存储结构
(1)顺序存储结构
从上到下,从左到右,依次存储每个节点
(2)链式存储结构
每个节点中除了存储数据元素本身之外,还需要两指针
如:
typedef struct Node { int data;//数据内容 struct Node* left;//指向左子树 struct Node* right;//指向右子树 }Node;
遍历方式
(1)先序遍历 =>
根 左子树 右子树
(2)中序遍历 =>
左子树 根 右子树
(3)后序遍历 =>
左子树 右子树 根
有序二叉树
左子树节点 <=
根节点 <= 右子树节点
主要搜索和查找数据的功能中
接下来我们来看看二叉树的各类操作的实现:
//实现有序二叉树的各种操作 #include <stdio.h> #include <stdlib.h> //定义节点的数据类型 typedef struct Node { int data;//存储数据内容 struct Node* left;//左子树的地址 struct Node* right;//右子树的地址 }Node; //定义有序二叉树的数据类型 typedef struct { Node* root;//记录根节点的地址 int cnt;//记录节点的个数 }Tree; //实现向有序二叉树中插入新节点的操作 void insert_data(Tree* pt,int data); //插入新节点的递归函数 void insert(Node** pRoot,Node* pn); //采用中序遍历方法进行遍历 void travel_data(Tree* pt); //遍历的递归函数 void travel(Node* pRoot); //实现创建新节点 Node* create_node(int data); //实现清空树中的所有节点 void clear_data(Tree* pt); //实现清空的递归函数 void clear(Node** pRoot); //实现查找一个指定的节点 Node** find_data(Tree* pt,int data); //查找的递归函数 Node** find(Node** pRoot,int data); //实现删除指定的节点 void del_data(Tree* pt,int data); //修改指定元素的操作 void modify(Tree* pt,int data,int new_data); //判断二叉树是否为空 int empty(Tree* pt); //判断二叉树是否为满 int full(Tree* pt); //计算二叉树中节点的个数 int size(Tree* pt); //获取根节点的元素值 int get_root(Tree* pt); int main(void) { //创建有序二叉树,并且进行初始化 Tree tree; tree.root = NULL; tree.cnt = 0; //插入新节点,进行遍历 insert_data(&tree,50); travel_data(&tree);//50 insert_data(&tree,70); travel_data(&tree);//50 70 insert_data(&tree,20); travel_data(&tree);//20 50 70 insert_data(&tree,60); travel_data(&tree);//20 50 60 70 printf("------------------\n"); //clear_data(&tree); travel_data(&tree);//20 50 60 70 del_data(&tree,50); travel_data(&tree);//20 60 70 del_data(&tree,30);//删除失败 travel_data(&tree);//20 60 70 del_data(&tree,20); travel_data(&tree);//60 70 printf("--------------------\n"); modify(&tree,10,20);//插入20 travel_data(&tree);//20 60 70 printf("二叉树中根节点的元素是:%d\n",get_root(&tree));//70 printf("二叉树中节点的个数是:%d\n",size(&tree));//3 printf("%s\n",empty(&tree)?"二叉树为空":"二叉树不为空"); printf("%s\n",full(&tree)?"二叉树已满":"二叉树没有满"); return 0; } //修改指定元素的操作 //旧元素不存在时,直接插入新元素即可 void modify(Tree* pt,int data,int new_data) { //1.删除旧元素 del_data(pt,data); //2.插入新元素 insert_data(pt,new_data); } //判断二叉树是否为空 int empty(Tree* pt) { return NULL == pt->root; } //判断二叉树是否为满 int full(Tree* pt) { return 0; } //计算二叉树中节点的个数 int size(Tree* pt) { return pt->cnt; } //获取根节点的元素值 int get_root(Tree* pt) { if(empty(pt)) { return -1;//表示失败(以后讲到) } return pt->root->data; } //实现删除指定的节点 void del_data(Tree* pt,int data) { //1.查找目标元素所在节点的地址 Node** pp = find_data(pt,data); //2.判断查找失败情况,不需要删除 if(NULL == *pp) { printf("目标元素不存在,删除失败\n"); return; } //3.合并左右子树,左子树插入到右子树中 if((*pp)->left != NULL) { //左子树不为空时,需要插入到右子树中 insert(&(*pp)->right,(*pp)->left); } //4.寻找指针记录要删除的节点地址 Node* q = *pp; //5.将原来指向要删除节点的指针 重新指向 合并之后的右子树 *pp = (*pp)->right; //6.删除目标元素所在的节点 free(q); q = NULL; //7.节点个数减1 pt->cnt--; } //查找的递归函数 Node** find(Node** pRoot,int data) { //1.判断二叉树是否为空,为空直接返回 if(NULL == *pRoot) { return pRoot;//&pt->root; } //2.比较根节点元素和目标元素的大小,如果相等,直接返回 if(data == (*pRoot)->data) { return pRoot;//&pt->root; } //3.若目标元素小于根节点元素值,左子树查找 else if(data < (*pRoot)->data) { return find(&(*pRoot)->left,data); } //4.若目标元素大于根节点元素,去右子树查找 else { return find(&(*pRoot)->right,data); } } //实现查找一个指定的节点 //返回 指向目标元素所在节点的指针 的地址 Node** find_data(Tree* pt,int data) { //调用递归函数实现查找 return find(&pt->root,data); } //实现清空的递归函数 void clear(Node** pRoot) { //判断二叉树是否为空 if(*pRoot != NULL) { //1.清空左子树 clear(&(*pRoot)->left); //2.清空右子树 clear(&(*pRoot)->right); //3.清空根节点 free(*pRoot); *pRoot = NULL; } } //实现清空树中的所有节点 void clear_data(Tree* pt) { //调用递归函数实现清空 clear(&pt->root); //二叉树的节点个数清零 pt->cnt = 0; } //实现创建新节点 Node* create_node(int data) { Node* pn = (Node*)malloc(sizeof(Node)); pn->data = data; pn->left = NULL; pn->right = NULL; return pn; } //遍历的递归函数 void travel(Node* pRoot) { //判断二叉树不为空时才需要遍历 if(pRoot != NULL) { //1.遍历左子树 travel(pRoot->left); //2.遍历根节点 printf("%d ",pRoot->data); //3.遍历右子树 travel(pRoot->right); } } //采用中序遍历方法进行遍历 void travel_data(Tree* pt) { //调用递归函数进行遍历 travel(pt->root); //打印换行 printf("\n"); } //插入新节点的递归函数 void insert(Node** pRoot,Node* pn) { //1.判断二叉树是否为空,如果为空则让根节点指针直接指向新节点 if(NULL == *pRoot) { *pRoot = pn; return; } //2.如果二叉树非空,比较根节点和新节点大小 //2.1 如果根节点大于新节点,插入左子树 if((*pRoot)->data > pn->data) { insert(&(*pRoot)->left,pn); } //2.2 如果根节点小于等于新节点,插入右子树 else { insert(&(*pRoot)->right,pn); } } //实现向有序二叉树中插入新节点的操作 void insert_data(Tree* pt,int data) { //1.创建新节点,进行初始化 create_node //Node* pn = (Node*)malloc(sizeof(Node)); //pn->data = data; //pn->left = NULL; //pn->right = NULL; //2.插入新节点到二叉树中,调用递归函数 insert(&pt->root,create_node(data)); //3.二叉树中节点个数加1 pt->cnt++; }
运行结果:
数据结构之---二叉树C实现的更多相关文章
- python数据结构之二叉树的统计与转换实例
python数据结构之二叉树的统计与转换实例 这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子.分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下 一.获取 ...
- python数据结构之二叉树的实现
树的定义 树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...
- Python数据结构之二叉树
本来打算一个学期分别用C++.Python.Java实现数据结构,看来要提前了 这个是Python版本,我写的数据结构尽量保持灵活性,本文bt1是一般的插入法建立二叉树结构,bt2就是可以任意输入,至 ...
- C++数据结构之二叉树
之前打算编算法类的程序,但是搞了几次英雄会后,觉得作为一个还在学习阶段的学生,实在是太浪费时间了,并不是没意义,而是我的基础还不牢固啊.所以转变了思路,这个学期打算分别用C++.Python.Java ...
- java数据结构之二叉树的实现
java二叉树的简单实现,可以简单实现深度为n的二叉树的建立,二叉树的前序遍历,中序遍历,后序遍历输出. /** *数据结构之树的实现 *2016/4/29 * **/ package cn.Link ...
- 数据结构之二叉树(BinaryTree)
导读 二叉树是一种很常见的数据结构,但要注意的是,二叉树并不是树的特殊情况,二叉树与树是两种不一样的数据结构. 目录 一. 二叉树的定义 二.二叉树为何不是特殊的树 三.二叉树的五种基本形态 四.二叉 ...
- 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)
前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...
- 一步一步写数据结构(二叉树的建立和遍历,c++)
简述: 二叉树是十分重要的数据结构,主要用来存放数据,并且方便查找等操作,在很多地方有广泛的应用. 二叉树有很多种类,比如线索二叉树,二叉排序树,平衡二叉树等,本文写的是最基础最简单的二叉树. 思路: ...
- js数据结构之二叉树的详细实现方法
数据结构中,二叉树的使用频率非常高,这得益于二叉树优秀的性能. 二叉树是非线性的数据结构,用以存储带有层级的数据,其用于查找的删除的性能非常高. 二叉树 数据结构的实现方法如下: function N ...
随机推荐
- 20 ViewPager Demo4自动轮播
MainActivity.java 思想:才用非常大的数 让其看起来可以循环轮播图片并且用户可以从尽头滑到首图的特点 . package com.qf.day20_viewpager_demo4; i ...
- 【Hadoop 10周年】我与Hadoop不得不说的故事
什么是Hadoop 今年是2016年,是hadoop十岁的生日,穿越时间和空间,跟她说一声生日快乐,二千零八年一月二十八号,是一个特别的日子,hadoop带着第一声啼哭,来到了这个世界, ...
- [struts2学习笔记] 第二节 使用Maven搞定管理和构造Struts 2 Web应用程序的七个步骤
本文地址:http://blog.csdn.net/sushengmiyan/article/details/40303897 官方文档:http://struts.apache.org/releas ...
- 如何使用excel画甘特图
甘特图小伙伴们都非常的熟悉,首先小编简单的向各位小伙伴介绍一下什么是甘特图,甘特图内在思想简单,即以图示的方式通过活动列表和时间刻度形象地表示出任何特定项目的活动顺序与持续时间.基本是一条线条图,横轴 ...
- JAVA之旅(三十一)——JAVA的图形化界面,GUI布局,Frame,GUI事件监听机制,Action事件,鼠标事件
JAVA之旅(三十一)--JAVA的图形化界面,GUI布局,Frame,GUI事件监听机制,Action事件,鼠标事件 有段时间没有更新JAVA了,我们今天来说一下JAVA中的图形化界面,也就是GUI ...
- shell入门之流程控制语句
1.case 脚本: #!/bin/bash #a test about case case $1 in "lenve") echo "input lenve" ...
- Android初级教程Activity小案例(计算器乘法运算)
首先设置两个布局文件,一个布局文件进行输入数据,获取加法运算:另一个布局文件进行显示最终结果.Activity1启动Activity2,并传递计算结果值给Activity2. main.xml: &l ...
- 编译Android 4.4.2源码
在之前的文章中,和大家分享了在天朝下下载android 4.4.2源码的过程(详见下载android4.4.2源码全过程(附已下载的源码)),现在写下编译的笔记. 虽然在android doc中,有提 ...
- Java 8时间和日期API 20例
本文由 ImportNew - Sandy 翻译自 javarevisited.欢迎加入翻译小组.转载请见文末要求. 伴随lambda表达式.streams以及一系列小优化,Java 8 推出了全新的 ...
- [问与答]怎样在 Android Stuido中删除一个project
sof Remove Project from Android Studio 问 第一次用Android Stuido,建立一个项目,却不知道怎么删除? 答 大概有3种方式 方式一 (简单实用) 点击 ...