DH密钥交换非对称加密
迪菲-赫尔曼密钥交换(Diffie–Hellman key exchange,简称“D–H”) 是一种安全协议。
它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
(1)、算法描述
离散对数的概念:
原根:如果a是素数p的一个原根,那么数值:
amodp,a^2 modp,…,a^(p-1) modp
是各不相同的整数,且以某种排列方式组成了从1到p-1的所有整数。
离散对数:如果对于一个整数b和素数p的一个原根a,可以找到一个唯一的指数 i,使得:
b =(a的i次方) modp 其中0≦i ≦p-1
那么指数i称为b的以a为基数的模p的离散对数。
Diffie-Hellman 算法的有效性依赖于计算离散对数的难度,其含义是:当已知大素数p和它的一个原根a后,对给定的 b,要计算 i ,被认为是很困难的,而给定 i 计算b 却相对容易。
Diffie-Hellman算法:
假如用户A和用户B希望交换一个密钥。
取素数p和整数a,a是p的一个原根,公开a和p。
A选择随机数XA<p,并计算YA=a^XA mod p。
B选择随机数XB<p,并计算YB=a^XB mod p。
每一方都将X保密而将Y公开让另一方得到。
A计算密钥的方式是:K=(YB) ^XA modp
B计算密钥的方式是:K=(YA) ^XB modp
证明:
(YB)^ XA mod p = (a^XB modp)^ XA mod p
= (a^XB)^ XA mod p = (a^XA) ^XB mod p
(<-- 密钥即为 a^(XA*XB) mod p)
=(a^XA modp)^ XB mod p= (YA) ^XB mod p
由于XA和XB是保密的,而第三方只有p、a、YB、YA可以利用,只有通过取离散对数来确定密钥,但对于大的素数p,计算离散对数是十分困难的。
例子:
假如用户Alice和用户Bob希望交换一个密钥。
取一个素数p =97和97的一个原根a=5。
Alice和Bob分别选择秘密密钥XA=36和XB=58,并计算各自的公开密钥:
YA=a^XA mod p=5^36 mod 97=50
YB=a^XB mod p=5^58 mod 97=44
Alice和Bob交换了公开密钥之后,计算共享密钥如下:
Alice:K=(YB) ^XA mod p=44^36 mod 97=75
Bob:K=(YA) ^XB mod p=50^58 mod 97=75
(2)、安全性
当然,为了使这个例子变得安全,必须使用非常大的XA, XB 以及p, 否则可以实验所有的可能取值。(总共有最多97个这样的值, 就算XA和XB很大也无济于事)。
如果 p 是一个至少 300 位的质数,并且XA和XB至少有100位长, 那么即使使用全人类所有的计算资源和当今最好的算法也不可能从a, p和a^(XA*XB) mod p 中计算出 XA*XB。
这个问题就是著名的离散对数问题。注意g则不需要很大, 并且在一般的实践中通常是2或者5。
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。
一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。
而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。
有很多种安全身份验证解决方案使用到了迪菲-赫尔曼密钥交换。例如当Alice和Bob共有一个公钥基础设施时,他们可以将他们的返回密钥进行签名。
DH密钥交换非对称加密的更多相关文章
- 非对称加密RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。使用最广泛的是RSA算法
非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey).公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密:如果用私 ...
- java-信息安全(九)-基于DH,非对称加密,对称加密等理解HTTPS
概述 java-信息安全(七)-基于非对称加密,对称加密等理解HTTPS 如果想要理解好https,请尽量了解好以上信息等. 参看文章: http://www.ruanyifeng.com/blog/ ...
- Atitit RSA非对称加密原理与解决方案
Atitit RSA非对称加密原理与解决方案 1.1. 一.一点历史 1 1.2. 八.加密和解密 2 1.3. 二.基于RSA的消息传递机制 3 1.4. 基于rsa的授权验证机器码 4 1.5. ...
- OpenSSL - RSA非对称加密实现
非对称加密:即两端使用一对不同的密钥进行加密. 在非对称加密中,需要两对密钥,公钥和私钥. 公钥个私钥属于对立关系,一把加密后,只有另一把才可以进行解密. 公钥数据加密 数字证书内包含了公钥,在进行会 ...
- 转: DH密钥交换和ECDH原理
转自:http://www.tuicool.com/articles/em6zEb DH密钥交换和ECDH原理 时间 2013-06-24 18:50:55 CSDN博客 原文 http://bl ...
- 加密解密知识 php非对称加密
function test1(){ $config = array( "digest_alg" => "sha1", "private_key_ ...
- 安全HTTPS-全面详解对称加密,非对称加密,数字签名,数字证书和HTTPS【下】
1. HTTPS 1.1. 什么是HTTPS HTTPS(HypertextTransfer Protocol Secure)即安全的HTTP.HTTPS的安全基础是安全套接层(Secure Soc ...
- DotNet加密方式解析--非对称加密
新年新气象,也希望新年可以挣大钱.不管今年年底会不会跟去年一样,满怀抱负却又壮志未酬.(不过没事,我已为各位卜上一卦,卦象显示各位都能挣钱...).已经上班两天了,公司大部分人还在休假,而我早已上班, ...
- DH 密钥交换算法
1.引言 CSDN搞什么短信验证,7年的账号居然登陆不了,真心抓狂,WTF!!!! DH,全称为"Diffie-Hellman",这是一种确保共享KEY安全穿越不安全网络的方法,换 ...
随机推荐
- ActiveMQ + NodeJS + Stomp 极简入门
前提 安装ActiveMQ和Nodejs 测试步骤 1.执行bin\win32\activemq.bat启动MQ服务 2. 打开http://localhost:8161/admin/topics.j ...
- Spark UI界面原理
当Spark程序在运行时,会提供一个Web页面查看Application运行状态信息.是否开启UI界面由参数spark.ui.enabled(默认为true)来确定.下面列出Spark UI一些相关配 ...
- activiti bpmnModel使用
bpmnModel对象,是activiti动态部署钟很重要的一个对象,如果bpmnModel对象不能深入的理解,那可能如果自己需要开发一套流程设计器,就显得力不从心,之前我们公司自己开发了一套acti ...
- 剑指Offer——腾讯+360+搜狗校招笔试题+知识点总结
剑指Offer--腾讯+360+搜狗校招笔试题+知识点总结 9.11晚7:00,腾讯笔试.选择题与编程.设计题单独计时. 栈是不是顺序存储的线性结构啊? 首先弄明白两个概念:存储结构和逻辑结构. 数据 ...
- 带你深入理解STL之Deque容器
在介绍STL的deque的容器之前,我们先来总结一下vector和list的优缺点.vector在内存中是分配一段连续的内存空间进行存储,其迭代器采用原生指针即可,因此其支持随机访问和存储,支持下标操 ...
- Spark技术内幕:Master的故障恢复
Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现 详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...
- 剑指Offer——网易笔试之不要二——欧式距离的典型应用
剑指Offer--网易笔试之不要二--欧式距离的典型应用 前言 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的 ...
- 08 ListView 优化的例子
package com.fmy.homework; import java.util.List; import com.fmy.homework.httputil.HttpUtil; import c ...
- Android开发学习之路--网络编程之xml、json
一般网络数据通过http来get,post,那么其中的数据不可能杂乱无章,比如我要post一段数据,肯定是要有一定的格式,协议的.常用的就是xml和json了.在此先要搭建个简单的服务器吧,首先呢下载 ...
- Android开发学习之路--Broadcast Receiver之初体验
学习了Activity组件后,这里再学习下另一个组件Broadcast Receiver组件.这里学习下自定义的Broadcast Receiver.通过按键自己发送广播,然后自己接收广播.新建MyB ...