DH密钥交换非对称加密
迪菲-赫尔曼密钥交换(Diffie–Hellman key exchange,简称“D–H”) 是一种安全协议。
它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
(1)、算法描述
离散对数的概念:
原根:如果a是素数p的一个原根,那么数值:
amodp,a^2 modp,…,a^(p-1) modp
是各不相同的整数,且以某种排列方式组成了从1到p-1的所有整数。
离散对数:如果对于一个整数b和素数p的一个原根a,可以找到一个唯一的指数 i,使得:
b =(a的i次方) modp 其中0≦i ≦p-1
那么指数i称为b的以a为基数的模p的离散对数。
Diffie-Hellman 算法的有效性依赖于计算离散对数的难度,其含义是:当已知大素数p和它的一个原根a后,对给定的 b,要计算 i ,被认为是很困难的,而给定 i 计算b 却相对容易。
Diffie-Hellman算法:
假如用户A和用户B希望交换一个密钥。
取素数p和整数a,a是p的一个原根,公开a和p。
A选择随机数XA<p,并计算YA=a^XA mod p。
B选择随机数XB<p,并计算YB=a^XB mod p。
每一方都将X保密而将Y公开让另一方得到。
A计算密钥的方式是:K=(YB) ^XA modp
B计算密钥的方式是:K=(YA) ^XB modp
证明:
(YB)^ XA mod p = (a^XB modp)^ XA mod p
= (a^XB)^ XA mod p = (a^XA) ^XB mod p
(<-- 密钥即为 a^(XA*XB) mod p)
=(a^XA modp)^ XB mod p= (YA) ^XB mod p
由于XA和XB是保密的,而第三方只有p、a、YB、YA可以利用,只有通过取离散对数来确定密钥,但对于大的素数p,计算离散对数是十分困难的。
例子:
假如用户Alice和用户Bob希望交换一个密钥。
取一个素数p =97和97的一个原根a=5。
Alice和Bob分别选择秘密密钥XA=36和XB=58,并计算各自的公开密钥:
YA=a^XA mod p=5^36 mod 97=50
YB=a^XB mod p=5^58 mod 97=44
Alice和Bob交换了公开密钥之后,计算共享密钥如下:
Alice:K=(YB) ^XA mod p=44^36 mod 97=75
Bob:K=(YA) ^XB mod p=50^58 mod 97=75
(2)、安全性
当然,为了使这个例子变得安全,必须使用非常大的XA, XB 以及p, 否则可以实验所有的可能取值。(总共有最多97个这样的值, 就算XA和XB很大也无济于事)。
如果 p 是一个至少 300 位的质数,并且XA和XB至少有100位长, 那么即使使用全人类所有的计算资源和当今最好的算法也不可能从a, p和a^(XA*XB) mod p 中计算出 XA*XB。
这个问题就是著名的离散对数问题。注意g则不需要很大, 并且在一般的实践中通常是2或者5。
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。
一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。
而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。
有很多种安全身份验证解决方案使用到了迪菲-赫尔曼密钥交换。例如当Alice和Bob共有一个公钥基础设施时,他们可以将他们的返回密钥进行签名。
DH密钥交换非对称加密的更多相关文章
- 非对称加密RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。使用最广泛的是RSA算法
非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey).公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密:如果用私 ...
- java-信息安全(九)-基于DH,非对称加密,对称加密等理解HTTPS
概述 java-信息安全(七)-基于非对称加密,对称加密等理解HTTPS 如果想要理解好https,请尽量了解好以上信息等. 参看文章: http://www.ruanyifeng.com/blog/ ...
- Atitit RSA非对称加密原理与解决方案
Atitit RSA非对称加密原理与解决方案 1.1. 一.一点历史 1 1.2. 八.加密和解密 2 1.3. 二.基于RSA的消息传递机制 3 1.4. 基于rsa的授权验证机器码 4 1.5. ...
- OpenSSL - RSA非对称加密实现
非对称加密:即两端使用一对不同的密钥进行加密. 在非对称加密中,需要两对密钥,公钥和私钥. 公钥个私钥属于对立关系,一把加密后,只有另一把才可以进行解密. 公钥数据加密 数字证书内包含了公钥,在进行会 ...
- 转: DH密钥交换和ECDH原理
转自:http://www.tuicool.com/articles/em6zEb DH密钥交换和ECDH原理 时间 2013-06-24 18:50:55 CSDN博客 原文 http://bl ...
- 加密解密知识 php非对称加密
function test1(){ $config = array( "digest_alg" => "sha1", "private_key_ ...
- 安全HTTPS-全面详解对称加密,非对称加密,数字签名,数字证书和HTTPS【下】
1. HTTPS 1.1. 什么是HTTPS HTTPS(HypertextTransfer Protocol Secure)即安全的HTTP.HTTPS的安全基础是安全套接层(Secure Soc ...
- DotNet加密方式解析--非对称加密
新年新气象,也希望新年可以挣大钱.不管今年年底会不会跟去年一样,满怀抱负却又壮志未酬.(不过没事,我已为各位卜上一卦,卦象显示各位都能挣钱...).已经上班两天了,公司大部分人还在休假,而我早已上班, ...
- DH 密钥交换算法
1.引言 CSDN搞什么短信验证,7年的账号居然登陆不了,真心抓狂,WTF!!!! DH,全称为"Diffie-Hellman",这是一种确保共享KEY安全穿越不安全网络的方法,换 ...
随机推荐
- JBOSS EAP 6 系列六 公共模块的jar配置到jboss的modules详细配置
公司项目中遇到并要解决的问题 1:原则上除了自己写的代码之外,公共的jar不应该都在打包的时候打包到ear里面,这样的话包太大,也不符合的分层的逻辑,在jboss容器内部,每个ear的包重复jar都会 ...
- Storm并发机制详解
本文可作为 <<Storm-分布式实时计算模式>>一书1.4节的读书笔记 在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例. 记住 ...
- Android View框架总结(六)View布局流程之Draw过程
请尊重分享成果,转载请注明出处: http://blog.csdn.net/hejjunlin/article/details/52236145 View的Draw时序图 ViewRootImpl.p ...
- Android传感器概述-android学习之旅(七)
传感器概述 传感器是第二代智能手机的重要标志之一.现在许多的手机和平板都内置了传感器(tv除外).android的SDK支持许多的传感器有十几种,但是手机只是支持一部分.例如方向传感器(电子罗盘)和重 ...
- 【java集合框架源码剖析系列】java源码剖析之TreeMap
注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于TreeMap的知识. 一TreeMap的定义: public class TreeMap&l ...
- Qt应用程序中设置字体
Qt应用程序中设置字体 应用程序中经常需要设置字体,例如office软件或者是其他的编辑器软件等等.这里主要涉及到如下几个概念:字体,字号以及风格(例如:粗体,斜体,下划线等等).Qt里面也有对应的类 ...
- 【一天一道LeetCode】#237. Delete Node in a Linked List
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Write a ...
- Hessian源码分析--总体架构
Hessian是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能. 相比WebService,Hessian更简单.快捷.采用的是二进制RPC协议,因为采用的是二进制协 ...
- Android:android sdk源码中怎么没有httpclient的源码了
欢迎关注公众号,每天推送Android技术文章,二维码如下:(可扫描) 今天想使用这个API,怎么也找不到.废了好多时间... 查阅资料才知道如下解释: 在android 6.0(API 23)中,G ...
- 如何在Cocos2D游戏中实现A*寻路算法(三)
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流 ...